Release AI-ModelZoo-4.0.0
Browse files
README.md
CHANGED
|
@@ -12,13 +12,12 @@ pipeline_tag: image-classification
|
|
| 12 |
# Model description
|
| 13 |
|
| 14 |
|
| 15 |
-
EfficientNet v2 family is one of the best topologies for image classification. It has been obtained through neural architecture search with a special care given to training time
|
| 16 |
-
and number of parameters reduction.
|
| 17 |
|
| 18 |
This family of networks comprises various subtypes: B0 (224x224), B1 (240x240), B2 (260x260), B3 (300x300), S (384x384) ranked by depth and width increasing order.
|
| 19 |
There are also M, L, XL variants but too large to be executed efficiently on STM32N6.
|
| 20 |
|
| 21 |
-
All these networks are already available on https://www.tensorflow.org/api_docs/python/tf/keras/applications/ pre-trained on
|
| 22 |
|
| 23 |
|
| 24 |
## Network information
|
|
@@ -72,49 +71,73 @@ For an image resolution of NxM and P classes
|
|
| 72 |
* Measures are done with default STM32Cube.AI configuration with enabled input / output allocated option.
|
| 73 |
* `fft` stands for "full fine-tuning", meaning that the full model weights were initialized from a transfer learning pre-trained model, and all the layers were unfrozen during the training.
|
| 74 |
|
| 75 |
-
### Reference **NPU** memory footprint on
|
| 76 |
-
|Model | Dataset | Format | Resolution | Series | Internal RAM (KiB) | External RAM (KiB) | Weights Flash (KiB) |
|
| 77 |
-
|
| 78 |
-
| [
|
| 79 |
-
| [
|
| 80 |
-
| [
|
| 81 |
-
| [
|
| 82 |
-
| [
|
| 83 |
-
| [
|
| 84 |
-
| [
|
| 85 |
-
| [
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
|
| 90 |
-
|
| 91 |
-
| [
|
| 92 |
-
| [
|
| 93 |
-
| [
|
| 94 |
-
| [
|
| 95 |
-
| [
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 101 |
### Accuracy with Food-101 dataset
|
| 102 |
|
| 103 |
Dataset details: [link](https://data.vision.ee.ethz.ch/cvl/datasets_extra/food-101/), Quotation[[3]](#3) , Number of classes: 101 , Number of images: 101 000
|
| 104 |
|
| 105 |
| Model | Format | Resolution | Top 1 Accuracy |
|
| 106 |
|--------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------|----------------|
|
| 107 |
-
| [
|
| 108 |
-
| [
|
| 109 |
-
| [
|
| 110 |
-
| [
|
| 111 |
-
| [
|
| 112 |
-
| [
|
| 113 |
-
| [
|
| 114 |
-
| [
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 118 |
|
| 119 |
Dataset details: [link](https://www.image-net.org), Quotation[[4]](#4).
|
| 120 |
Number of classes: 1000.
|
|
@@ -123,14 +146,22 @@ For the sake of simplicity, the accuracy reported here was estimated on the 1000
|
|
| 123 |
|
| 124 |
| Model | Format | Resolution | Top 1 Accuracy |
|
| 125 |
|------------------------------------------------------------------------------------------------------------------------------------------|--------|------------|----------------|
|
| 126 |
-
| [
|
| 127 |
-
| [
|
| 128 |
-
| [
|
| 129 |
-
| [
|
| 130 |
-
| [
|
| 131 |
-
| [
|
| 132 |
-
| [
|
| 133 |
-
| [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 134 |
|
| 135 |
|
| 136 |
## Retraining and Integration in a simple example:
|
|
@@ -151,4 +182,4 @@ L. Bossard, M. Guillaumin, and L. Van Gool, "Food-101 -- Mining Discriminative C
|
|
| 151 |
|
| 152 |
<a id="4">[4]</a>
|
| 153 |
Olga Russakovsky*, Jia Deng*, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg and Li Fei-Fei.
|
| 154 |
-
(* = equal contribution)
|
|
|
|
| 12 |
# Model description
|
| 13 |
|
| 14 |
|
| 15 |
+
EfficientNet v2 family is one of the best topologies for image classification. It has been obtained through neural architecture search with a special care given to training time and number of parameters reduction.
|
|
|
|
| 16 |
|
| 17 |
This family of networks comprises various subtypes: B0 (224x224), B1 (240x240), B2 (260x260), B3 (300x300), S (384x384) ranked by depth and width increasing order.
|
| 18 |
There are also M, L, XL variants but too large to be executed efficiently on STM32N6.
|
| 19 |
|
| 20 |
+
All these networks are already available on https://www.tensorflow.org/api_docs/python/tf/keras/applications/ pre-trained on imagenet.
|
| 21 |
|
| 22 |
|
| 23 |
## Network information
|
|
|
|
| 71 |
* Measures are done with default STM32Cube.AI configuration with enabled input / output allocated option.
|
| 72 |
* `fft` stands for "full fine-tuning", meaning that the full model weights were initialized from a transfer learning pre-trained model, and all the layers were unfrozen during the training.
|
| 73 |
|
| 74 |
+
### Reference **NPU** memory footprint on food101 and imagenet dataset (see Accuracy for details on dataset)
|
| 75 |
+
|Model | Dataset | Format | Resolution | Series | Internal RAM (KiB) | External RAM (KiB) | Weights Flash (KiB) | STEdgeAI Core version |
|
| 76 |
+
|-----------|---------------|----------|------------|-----------|--------------------|--------------------|---------------------|-----------------------|
|
| 77 |
+
| [efficientnetv2b0_224_fft onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/ST_pretrainedmodel_public_dataset/food101/efficientnetv2b0_224_fft/efficientnetv2b0_224_fft_qdq_int8.onnx) | food101 | Int8 | 224x224x3 | STM32N6 | 1911.56 |0.0| 6839.39 | 3.0.0 |
|
| 78 |
+
| [efficientnetv2b0_224_fft onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/ST_pretrainedmodel_public_dataset/food101/efficientnetv2b0_224_fft/efficientnetv2b0_224_fft_qdq_w4_90.1%_w8_9.9%_a8_100%_acc_84.47.onnx) | food101 | Int8/Int4 | 224x224x3 | STM32N6 | 1911.56 |0.0| 4237.52 | 3.0.0 |
|
| 79 |
+
| [efficientnetv2b1_240_fft onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/ST_pretrainedmodel_public_dataset/food101/efficientnetv2b1_240_fft/efficientnetv2b1_240_fft_qdq_int8.onnx) | food101 | Int8 | 240x240x3 | STM32N6 | 2604.03 |0.0| 8089.27 | 3.0.0 |
|
| 80 |
+
| [efficientnetv2b1_240_fft onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/ST_pretrainedmodel_public_dataset/food101/efficientnetv2b1_240_fft/efficientnetv2b1_240_fft_qdq_w4_91.8%_w8_8.2%_a8_100%_acc_85.71.onnx) | food101 | Int8/Int4 | 240x240x3 | STM32N6 | 2604.03 |0.0| 4995.39 | 3.0.0 |
|
| 81 |
+
| [efficientnetv2b2_260_fft onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/ST_pretrainedmodel_public_dataset/food101/efficientnetv2b2_260_fft/efficientnetv2b2_260_fft_qdq_int8.onnx) | food101 | Int8 | 260x260x3 | STM32N6 | 2712.19 |528.12| 10328.52 | 3.0.0 |
|
| 82 |
+
| [efficientnetv2b2_260_fft onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/ST_pretrainedmodel_public_dataset/food101/efficientnetv2b2_260_fft/efficientnetv2b2_260_fft_qdq_w4_81.26%_w8_18.74%_a8_100%_acc_87.24.onnx) | food101 | Int8/Int4 | 260x260x3 | STM32N6 | 2712.19 |528.12| 6865.39 | 3.0.0 |
|
| 83 |
+
| [efficientnetv2s_384_fft onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/ST_pretrainedmodel_public_dataset/food101/efficientnetv2s_384_fft/efficientnetv2s_384_fft_qdq_int8.onnx) | food101 | Int8 | 384x384x3 | STM32N6 | 2757 | 3456 | 24262.34 | 3.0.0 |
|
| 84 |
+
| [efficientnetv2s_384_fft onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/ST_pretrainedmodel_public_dataset/food101/efficientnetv2s_384_fft/efficientnetv2s_384_fft_qdq_w4_95.95%_w8_4.05%_a8_100%_acc_89.87.onnx) | food101 | Int8/Int4 | 384x384x3 | STM32N6 | 2757 | 3456 | 14836.94 | 3.0.0 |
|
| 85 |
+
| [efficientnetv2b0_224 onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/Public_pretrainedmodel_public_dataset/ImageNet/imagenet/efficientnetv2b0_224/efficientnetv2b0_224_qdq_int8.onnx) | imagenet | Int8 | 224x224x3 | STM32N6 | 1911.56 | 0.0 | 7967.05 | 3.0.0 |
|
| 86 |
+
| [efficientnetv2b0_224 onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/Public_pretrainedmodel_public_dataset/ImageNet/imagenet/efficientnetv2b0_224/efficientnetv2b0_224_qdq_w4_65.43%_w8_34.57%_a8_100%_acc_73.38.onnx) | imagenet | Int8/Int4 | 224x224x3 | STM32N6 | 1911.56 | 0.0 | 5710.05 | 3.0.0 |
|
| 87 |
+
| [efficientnetv2b1_240 onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/Public_pretrainedmodel_public_dataset/ImageNet/imagenet/efficientnetv2b1_240/efficientnetv2b1_240_qdq_int8.onnx) | imagenet | Int8 | 240x240x3 | STM32N6 | 2604.03 | 0.0 | 9216.92 | 3.0.0 |
|
| 88 |
+
| [efficientnetv2b1_240 onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/Public_pretrainedmodel_public_dataset/ImageNet/imagenet/efficientnetv2b1_240/efficientnetv2b1_240_qdq_w4_73.1%_w8_26.9%_a8_100%_acc_73.92.onnx) | imagenet | Int8/Int4 | 240x240x3 | STM32N6 | 2604.03 | 0.0 | 6342.67 | 3.0.0 |
|
| 89 |
+
| [efficientnetv2b2_260 onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/Public_pretrainedmodel_public_dataset/ImageNet/imagenet/efficientnetv2b2_260/efficientnetv2b2_260_qdq_int8.onnx) | imagenet | Int8 | 260x260x3 | STM32N6 | 2712.19 | 528.12 | 11568.55 | 3.0.0 |
|
| 90 |
+
| [efficientnetv2b2_260 onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/Public_pretrainedmodel_public_dataset/ImageNet/imagenet/efficientnetv2b2_260/efficientnetv2b2_260_qdq_w4_67.53%_w8_32.47%_a8_100%_acc_74.71.onnx) | imagenet | Int8/Int4 | 260x260x3 | STM32N6 | 2712.19 | 528.12 | 8273.17 | 3.0.0 |
|
| 91 |
+
| [efficientnetv2b3_300 onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/Public_pretrainedmodel_public_dataset/ImageNet/imagenet/efficientnetv2b3_300/efficientnetv2b3_300_qdq_int8.onnx) | imagenet | Int8 | 300x300x3 | STM32N6 | 2574.47 | 1757.81 | 16510.05 | 3.0.0 |
|
| 92 |
+
| [efficientnetv2b3_300 onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/Public_pretrainedmodel_public_dataset/ImageNet/imagenet/efficientnetv2b3_300/efficientnetv2b3_300_qdq_w4_88.31%_w8_11.69%_a8_100%_acc_78.11.onnx) | imagenet | Int8/Int4 | 300x300x3 | STM32N6 | 2574.47 | 1757.81 | 10376.74 | 3.0.0 |
|
| 93 |
+
| [efficientnetv2s_384 onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/Public_pretrainedmodel_public_dataset/ImageNet/imagenet/efficientnetv2s_384/efficientnetv2s_384_qdq_int8.onnx) | imagenet | Int8 | 384x384x3 | STM32N6 | 2800 | 2592 | 25390 | 3.0.0 |
|
| 94 |
+
| [efficientnetv2s_384 onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/Public_pretrainedmodel_public_dataset/ImageNet/imagenet/efficientnetv2s_384/efficientnetv2s_384_qdq_w4_95.63%_w8_4.37%_a8_100%_acc_82.25.onnx) | imagenet | Int8/Int4 | 384x384x3 | STM32N6 | 2800 | 2592 | 15458.97 | 3.0.0 |
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
### Reference **NPU** inference time on food101 and imagenet dataset (see Accuracy for details on dataset)
|
| 99 |
+
| Model | Dataset | Format | Resolution | Board | Execution Engine | Inference time (ms) | Inf / sec | STEdgeAI Core version |
|
| 100 |
+
|--------|------------------|--------|-------------|------------------|------------------|---------------------|-----------|------------------------|
|
| 101 |
+
| [efficientnetv2b0_224_fft onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/ST_pretrainedmodel_public_dataset/food101/efficientnetv2b0_224_fft/efficientnetv2b0_224_fft_qdq_int8.onnx) | food101 | Int8 | 224x224x3 | STM32N6570-DK | NPU/MCU | 62.48 | 16 | 3.0.0 |
|
| 102 |
+
| [efficientnetv2b0_224_fft onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/ST_pretrainedmodel_public_dataset/food101/efficientnetv2b0_224_fft/efficientnetv2b0_224_fft_qdq_w4_90.1%_w8_9.9%_a8_100%_acc_84.47.onnx) | food101 | Int8/Int4 | 224x224x3 | STM32N6570-DK | NPU/MCU | 57.05 | 17.53 | 3.0.0 |
|
| 103 |
+
| [efficientnetv2b1_240_fft onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/ST_pretrainedmodel_public_dataset/food101/efficientnetv2b1_240_fft/efficientnetv2b1_240_fft_qdq_int8.onnx) | food101 | Int8 | 240x240x3 | STM32N6570-DK | NPU/MCU | 86.55 | 11.55 | 3.0.0 |
|
| 104 |
+
| [efficientnetv2b1_240_fft onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/ST_pretrainedmodel_public_dataset/food101/efficientnetv2b1_240_fft/efficientnetv2b1_240_fft_qdq_w4_91.8%_w8_8.2%_a8_100%_acc_85.71.onnx) | food101 | Int8/Int4 | 240x240x3 | STM32N6570-DK | NPU/MCU | 80.5 | 12.42 | 3.0.0 |
|
| 105 |
+
| [efficientnetv2b2_260_fft onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/ST_pretrainedmodel_public_dataset/food101/efficientnetv2b2_260_fft/efficientnetv2b2_260_fft_qdq_int8.onnx) | food101 | Int8 | 260x260x3 | STM32N6570-DK | NPU/MCU | 147.21 | 6.79 | 3.0.0 |
|
| 106 |
+
| [efficientnetv2b2_260_fft onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/ST_pretrainedmodel_public_dataset/food101/efficientnetv2b2_260_fft/efficientnetv2b2_260_fft_qdq_w4_81.26%_w8_18.74%_a8_100%_acc_87.24.onnx) | food101 | Int8/Int4 | 260x260x3 | STM32N6570-DK | NPU/MCU | 140.38 | 7.12 | 3.0.0 |
|
| 107 |
+
| [efficientnetv2s_384_fft onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/ST_pretrainedmodel_public_dataset/food101/efficientnetv2s_384_fft/efficientnetv2s_384_fft_qdq_int8.onnx) | food101 | Int8 | 384x384x3 | STM32N6570-DK | NPU/MCU | 1089.83 | 0.92 | 3.0.0 |
|
| 108 |
+
| [efficientnetv2s_384_fft onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/ST_pretrainedmodel_public_dataset/food101/efficientnetv2s_384_fft/efficientnetv2s_384_fft_qdq_w4_95.95%_w8_4.05%_a8_100%_acc_89.87.onnx) | food101 | Int8/Int4 | 384x384x3 | STM32N6570-DK | NPU/MCU | 1078.35 | 0.93 | 3.0.0 |
|
| 109 |
+
| [efficientnetv2b0_224 onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/Public_pretrainedmodel_public_dataset/ImageNet/imagenet/efficientnetv2b0_224/efficientnetv2b0_224_qdq_int8.onnx) | imagenet | Int8 | 224x224x3 | STM32N6570-DK | NPU/MCU | 65.44 | 15.28 | 3.0.0 |
|
| 110 |
+
| [efficientnetv2b0_224 onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/Public_pretrainedmodel_public_dataset/ImageNet/imagenet/efficientnetv2b0_224/efficientnetv2b0_224_qdq_w4_65.43%_w8_34.57%_a8_100%_acc_73.38.onnx) | imagenet | Int8/Int4 | 224x224x3 | STM32N6570-DK | NPU/MCU | 59.54 | 16.80 | 3.0.0 |
|
| 111 |
+
| [efficientnetv2b1_240 onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/Public_pretrainedmodel_public_dataset/ImageNet/imagenet/efficientnetv2b1_240/efficientnetv2b1_240_qdq_int8.onnx) | imagenet | Int8 | 240x240x3 | STM32N6570-DK | NPU/MCU | 89.71 | 11.15 | 3.0.0 |
|
| 112 |
+
| [efficientnetv2b1_240 onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/Public_pretrainedmodel_public_dataset/ImageNet/imagenet/efficientnetv2b1_240/efficientnetv2b1_240_qdq_w4_73.1%_w8_26.9%_a8_100%_acc_73.92.onnx) | imagenet | Int8/Int4 | 240x240x3 | STM32N6570-DK | NPU/MCU | 83.2 | 12.02 | 3.0.0 |
|
| 113 |
+
| [efficientnetv2b2_260 onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/Public_pretrainedmodel_public_dataset/ImageNet/imagenet/efficientnetv2b2_260/efficientnetv2b2_260_qdq_int8.onnx) | imagenet | Int8 | 260x260x3 | STM32N6570-DK | NPU/MCU | 150.04 | 6.66 | 3.0.0 |
|
| 114 |
+
| [efficientnetv2b2_260 onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/Public_pretrainedmodel_public_dataset/ImageNet/imagenet/efficientnetv2b2_260/efficientnetv2b2_260_qdq_w4_67.53%_w8_32.47%_a8_100%_acc_74.71.onnx) | imagenet | Int8/Int4 | 260x260x3 | STM32N6570-DK | NPU/MCU | 141.94 | 7.05 | 3.0.0 |
|
| 115 |
+
| [efficientnetv2b3_300 onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/Public_pretrainedmodel_public_dataset/ImageNet/imagenet/efficientnetv2b3_300/efficientnetv2b3_300_qdq_int8.onnx) | imagenet | Int8 | 300x300x3 | STM32N6570-DK | NPU/MCU | 224.03 | 4.46 | 3.0.0 |
|
| 116 |
+
| [efficientnetv2b3_300 onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/Public_pretrainedmodel_public_dataset/ImageNet/imagenet/efficientnetv2b3_300/efficientnetv2b3_300_qdq_w4_88.31%_w8_11.69%_a8_100%_acc_78.11.onnx) | imagenet | Int8/Int4 | 300x300x3 | STM32N6570-DK | NPU/MCU | 219.31 | 4.56 | 3.0.0 |
|
| 117 |
+
| [efficientnetv2s_384 onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/Public_pretrainedmodel_public_dataset/ImageNet/imagenet/efficientnetv2s_384/efficientnetv2s_384_qdq_int8.onnx) | imagenet | Int8 | 384x384x3 | STM32N6570-DK | NPU/MCU | 839.14 | 1.19 | 3.0.0 |
|
| 118 |
+
| [efficientnetv2s_384 onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/Public_pretrainedmodel_public_dataset/ImageNet/imagenet/efficientnetv2s_384/efficientnetv2s_384_qdq_w4_95.63%_w8_4.37%_a8_100%_acc_82.25.onnx) | imagenet | Int8/Int4 | 384x384x3 | STM32N6570-DK | NPU/MCU | 826.23 | 1.21 | 3.0.0 |
|
| 119 |
+
|
| 120 |
### Accuracy with Food-101 dataset
|
| 121 |
|
| 122 |
Dataset details: [link](https://data.vision.ee.ethz.ch/cvl/datasets_extra/food-101/), Quotation[[3]](#3) , Number of classes: 101 , Number of images: 101 000
|
| 123 |
|
| 124 |
| Model | Format | Resolution | Top 1 Accuracy |
|
| 125 |
|--------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------|----------------|
|
| 126 |
+
| [efficientnetv2b0_224_fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/ST_pretrainedmodel_public_dataset/food101/efficientnetv2b0_224_fft/efficientnetv2b0_224_fft.keras) | Float | 224x224x3 | 86.59 % |
|
| 127 |
+
| [efficientnetv2b0_224_fft onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/ST_pretrainedmodel_public_dataset/food101/efficientnetv2b0_224_fft/efficientnetv2b0_224_fft_qdq_int8.onnx) | Int8 | 224x224x3 | 85.98 % |
|
| 128 |
+
| [efficientnetv2b0_224_fft onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/ST_pretrainedmodel_public_dataset/food101/efficientnetv2b0_224_fft/efficientnetv2b0_224_fft_qdq_w4_90.1%_w8_9.9%_a8_100%_acc_84.47.onnx)| Int8/Int4 | 224x224x3 | 84.47 % |
|
| 129 |
+
| [efficientnetv2b1_240_fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/ST_pretrainedmodel_public_dataset/food101/efficientnetv2b1_240_fft/efficientnetv2b1_240_fft.keras) | Float | 240x240x3 | 87.71 % |
|
| 130 |
+
| [efficientnetv2b1_240_fft onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/ST_pretrainedmodel_public_dataset/food101/efficientnetv2b1_240_fft/efficientnetv2b1_240_fft_qdq_int8.onnx) | Int8 | 240x240x3 | 87.09 % |
|
| 131 |
+
| [efficientnetv2b1_240_fft onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/ST_pretrainedmodel_public_dataset/food101/efficientnetv2b1_240_fft/efficientnetv2b1_240_fft_qdq_w4_91.8%_w8_8.2%_a8_100%_acc_85.71.onnx) | Int8/Int4 | 240x240x3 | 85.71 % |
|
| 132 |
+
| [efficientnetv2b2_260_fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/ST_pretrainedmodel_public_dataset/food101/efficientnetv2b2_260_fft/efficientnetv2b2_260_fft.keras) | Float | 260x260x3 | 88.67 % |
|
| 133 |
+
| [efficientnetv2b2_260_fft onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/ST_pretrainedmodel_public_dataset/food101/efficientnetv2b2_260_fft/efficientnetv2b2_260_fft_qdq_int8.onnx) | Int8 | 260x260x3 | 88.44 % |
|
| 134 |
+
| [efficientnetv2b2_260_fft onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/ST_pretrainedmodel_public_dataset/food101/efficientnetv2b2_260_fft/efficientnetv2b2_260_fft_qdq_w4_81.26%_w8_18.74%_a8_100%_acc_87.24.onnx) | Int8/Int4 | 260x260x3 | 87.24 % |
|
| 135 |
+
| [efficientnetv2s_384_fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/ST_pretrainedmodel_public_dataset/food101/efficientnetv2s_384_fft/efficientnetv2s_384_fft.keras) | Float | 384x384x3 | 91.69 % |
|
| 136 |
+
| [efficientnetv2s_384_fft onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/ST_pretrainedmodel_public_dataset/food101/efficientnetv2s_384_fft/efficientnetv2s_384_fft_qdq_int8.onnx) | Int8 | 384x384x3 | 91.34 % |
|
| 137 |
+
| [efficientnetv2s_384_fft onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/ST_pretrainedmodel_public_dataset/food101/efficientnetv2s_384_fft/efficientnetv2s_384_fft_qdq_w4_95.95%_w8_4.05%_a8_100%_acc_89.87.onnx) | Int8/Int4 | 384x384x3 | 89.87 % |
|
| 138 |
+
|
| 139 |
+
|
| 140 |
+
### Accuracy with imagenet
|
| 141 |
|
| 142 |
Dataset details: [link](https://www.image-net.org), Quotation[[4]](#4).
|
| 143 |
Number of classes: 1000.
|
|
|
|
| 146 |
|
| 147 |
| Model | Format | Resolution | Top 1 Accuracy |
|
| 148 |
|------------------------------------------------------------------------------------------------------------------------------------------|--------|------------|----------------|
|
| 149 |
+
| [efficientnetv2b0_224](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/Public_pretrainedmodel_public_dataset/ImageNet/imagenet/efficientnetv2b0_224/efficientnetv2b0_224.keras) | Float | 224x224x3 | 75.18 % |
|
| 150 |
+
| [efficientnetv2b0_224 onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/Public_pretrainedmodel_public_dataset/ImageNet/imagenet/efficientnetv2b0_224/efficientnetv2b0_224_qdq_int8.onnx) | Int8 | 224x224x3 | 73.75 % |
|
| 151 |
+
| [efficientnetv2b0_224 onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/Public_pretrainedmodel_public_dataset/ImageNet/imagenet/efficientnetv2b0_224/efficientnetv2b0_224_qdq_w4_65.43%_w8_34.57%_a8_100%_acc_73.38.onnx) | Int8/Int4 | 224x224x3 | 73.38 % |
|
| 152 |
+
| [efficientnetv2b1_240](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/Public_pretrainedmodel_public_dataset/ImageNet/imagenet/efficientnetv2b1_240/efficientnetv2b1_240.keras) | Float | 240x240x3 | 76.14 % |
|
| 153 |
+
| [efficientnetv2b1_240 onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/Public_pretrainedmodel_public_dataset/ImageNet/imagenet/efficientnetv2b1_240/efficientnetv2b1_240_qdq_int8.onnx) | Int8 | 240x240x3 | 75.19 % |
|
| 154 |
+
| [efficientnetv2b1_240 onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/Public_pretrainedmodel_public_dataset/ImageNet/imagenet/efficientnetv2b1_240/efficientnetv2b1_240_qdq_w4_73.1%_w8_26.9%_a8_100%_acc_73.92.onnx) | Int8/Int4 | 240x240x3 | 73.92 % |
|
| 155 |
+
| [efficientnetv2b2_260](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/Public_pretrainedmodel_public_dataset/ImageNet/imagenet/efficientnetv2b2_260/efficientnetv2b2_260.keras) | Float | 260x260x3 | 76.58 % |
|
| 156 |
+
| [efficientnetv2b2_260 onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/Public_pretrainedmodel_public_dataset/ImageNet/imagenet/efficientnetv2b2_260/efficientnetv2b2_260_qdq_int8.onnx) | Int8 | 260x260x3 | 76.14 % |
|
| 157 |
+
|[efficientnetv2b2_260 onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/Public_pretrainedmodel_public_dataset/ImageNet/imagenet/efficientnetv2b2_260/efficientnetv2b2_260_qdq_w4_67.53%_w8_32.47%_a8_100%_acc_74.71.onnx) | Int8/Int4 | 260x260x3 | 74.71 % |
|
| 158 |
+
| [efficientnetv2b3_300](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/Public_pretrainedmodel_public_dataset/ImageNet/imagenet/efficientnetv2b3_300/efficientnetv2b3_300.keras) | Float | 300x300x3 | 79.18 % |
|
| 159 |
+
| [efficientnetv2b3_300 onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/Public_pretrainedmodel_public_dataset/ImageNet/imagenet/efficientnetv2b3_300/efficientnetv2b3_300_qdq_int8.onnx) | Int8 | 300x300x3 | 79.05 % |
|
| 160 |
+
| [efficientnetv2b3_300 onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/Public_pretrainedmodel_public_dataset/ImageNet/imagenet/efficientnetv2b3_300/efficientnetv2b3_300_qdq_w4_88.31%_w8_11.69%_a8_100%_acc_78.11.onnx) | Int8/Int4 | 300x300x3 | 78.11 % |
|
| 161 |
+
| [efficientnetv2s_384](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/Public_pretrainedmodel_public_dataset/ImageNet/imagenet/efficientnetv2s_384/efficientnetv2s_384.keras) | Float | 384x384x3 | 83.52 % |
|
| 162 |
+
| [efficientnetv2s_384 onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/Public_pretrainedmodel_public_dataset/ImageNet/imagenet/efficientnetv2s_384/efficientnetv2s_384_qdq_int8.onnx) | Int8 | 384x384x3 | 83.07 % |
|
| 163 |
+
| [efficientnetv2s_384 onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/efficientnetv2/Public_pretrainedmodel_public_dataset/ImageNet/imagenet/efficientnetv2s_384/efficientnetv2s_384_qdq_w4_95.63%_w8_4.37%_a8_100%_acc_82.25.onnx) | Int8/Int4 | 384x384x3 | 82.25 % |
|
| 164 |
+
|
| 165 |
|
| 166 |
|
| 167 |
## Retraining and Integration in a simple example:
|
|
|
|
| 182 |
|
| 183 |
<a id="4">[4]</a>
|
| 184 |
Olga Russakovsky*, Jia Deng*, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg and Li Fei-Fei.
|
| 185 |
+
(* = equal contribution) imagenet Large Scale Visual Recognition Challenge.
|