sred-analysis-model / handler.py
SREDWise's picture
updated handler.py to resolve tokenization errors.
d64d976 verified
raw
history blame
3.38 kB
from typing import List, Dict
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
class EndpointHandler:
def __init__(self, path: str):
# Load model and tokenizer
self.tokenizer = AutoTokenizer.from_pretrained(path)
self.model = AutoModelForCausalLM.from_pretrained(
path,
torch_dtype=torch.float32, # Use float32 for CPU
device_map="auto"
)
# Set up generation parameters
self.default_params = {
"max_length": 1000,
"temperature": 0.7,
"top_p": 0.7,
"top_k": 50,
"repetition_penalty": 1.0,
"do_sample": True,
"pad_token_id": self.tokenizer.pad_token_id,
"eos_token_id": self.tokenizer.eos_token_id
}
def __call__(self, data: Dict):
"""
Args:
data: Dictionary with either string input or structured messages
Returns:
Generated text
"""
try:
# Handle input
if isinstance(data.get("inputs"), str):
input_text = data["inputs"]
else:
# Extract messages from input
messages = data.get("inputs", {}).get("messages", [])
if not messages:
return {"error": "No messages provided"}
# Format input text
input_text = ""
for msg in messages:
role = msg.get("role", "")
content = msg.get("content", "")
input_text += f"{role}: {content}\n"
# Get generation parameters
params = {**self.default_params}
if "parameters" in data:
params.update(data["parameters"])
# Ensure proper tokenization with padding and attention mask
tokenizer_output = self.tokenizer(
input_text,
return_tensors="pt",
padding=True,
truncation=True,
max_length=512,
return_attention_mask=True
)
# Move tensors to the same device as the model
input_ids = tokenizer_output["input_ids"]
attention_mask = tokenizer_output["attention_mask"]
# Generate response
with torch.no_grad():
outputs = self.model.generate(
input_ids,
attention_mask=attention_mask,
pad_token_id=self.tokenizer.pad_token_id,
**params
)
# Decode response
generated_text = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
return [{"generated_text": generated_text}]
except Exception as e:
print(f"Error in generation: {str(e)}")
return {"error": str(e)}
def preprocess(self, request):
"""
Prepare request for inference
"""
if request.content_type != "application/json":
raise ValueError("Content type must be application/json")
data = request.json
return data
def postprocess(self, data):
"""
Post-process model output
"""
return data