|
from typing import List, Dict |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
import torch |
|
|
|
class EndpointHandler: |
|
def __init__(self, path: str): |
|
|
|
self.tokenizer = AutoTokenizer.from_pretrained(path) |
|
self.model = AutoModelForCausalLM.from_pretrained( |
|
path, |
|
torch_dtype=torch.float32, |
|
device_map="auto" |
|
) |
|
|
|
|
|
self.default_params = { |
|
"max_length": 1000, |
|
"temperature": 0.7, |
|
"top_p": 0.7, |
|
"top_k": 50, |
|
"repetition_penalty": 1.0, |
|
"do_sample": True, |
|
"pad_token_id": self.tokenizer.pad_token_id, |
|
"eos_token_id": self.tokenizer.eos_token_id |
|
} |
|
|
|
def __call__(self, data: Dict): |
|
""" |
|
Args: |
|
data: Dictionary with "inputs" and optional "parameters" |
|
Returns: |
|
Generated text |
|
""" |
|
|
|
messages = data.get("inputs", {}).get("messages", []) |
|
if not messages: |
|
return {"error": "No messages provided"} |
|
|
|
|
|
input_text = "" |
|
for msg in messages: |
|
role = msg.get("role", "") |
|
content = msg.get("content", "") |
|
input_text += f"{role}: {content}\n" |
|
|
|
|
|
params = {**self.default_params} |
|
if "parameters" in data: |
|
params.update(data["parameters"]) |
|
|
|
|
|
inputs = self.tokenizer( |
|
input_text, |
|
return_tensors="pt", |
|
padding=True, |
|
truncation=True, |
|
max_length=512 |
|
) |
|
|
|
|
|
with torch.no_grad(): |
|
outputs = self.model.generate( |
|
inputs["input_ids"], |
|
attention_mask=inputs["attention_mask"], |
|
**params |
|
) |
|
|
|
|
|
generated_text = self.tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
|
|
return [{"generated_text": generated_text}] |
|
|
|
def preprocess(self, request): |
|
""" |
|
Prepare request for inference |
|
""" |
|
if request.content_type != "application/json": |
|
raise ValueError("Content type must be application/json") |
|
|
|
data = request.json |
|
return data |
|
|
|
def postprocess(self, data): |
|
""" |
|
Post-process model output |
|
""" |
|
return data |