ibalampanis
commited on
Commit
•
97805a3
1
Parent(s):
c04b794
Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,188 @@
|
|
1 |
---
|
|
|
2 |
license: apache-2.0
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
base_model: ilsp/Meltemi-7B-Instruct-v1
|
3 |
license: apache-2.0
|
4 |
+
model_name: Meltemi-7B-Instruct-v1
|
5 |
+
pipeline_tag: text-generation
|
6 |
+
quantized_by: SPAHE
|
7 |
+
tags:
|
8 |
+
- finetuned
|
9 |
---
|
10 |
+
<!-- markdownlint-disable MD041 -->
|
11 |
+
|
12 |
+
# Meltemi 7B Instruct v1 - GGUF
|
13 |
+
- Original model: [Meltemi 7B Instruct v1](https://huggingface.co/ilsp/Meltemi-7B-Instruct-v1)
|
14 |
+
|
15 |
+
<!-- description start -->
|
16 |
+
## Description
|
17 |
+
|
18 |
+
This repo contains GGUF format model files for [ilsp's Meltemi 7B Instruct v1](https://huggingface.co/ilsp/Meltemi-7B-Instruct-v1).
|
19 |
+
|
20 |
+
<!-- description end -->
|
21 |
+
<!-- README_GGUF.md-about-gguf start -->
|
22 |
+
### About GGUF
|
23 |
+
|
24 |
+
GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp.
|
25 |
+
|
26 |
+
Here is an incomplete list of clients and libraries that are known to support GGUF:
|
27 |
+
|
28 |
+
* [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option.
|
29 |
+
* [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration.
|
30 |
+
* [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling.
|
31 |
+
* [GPT4All](https://gpt4all.io/index.html), a free and open source local running GUI, supporting Windows, Linux and macOS with full GPU accel.
|
32 |
+
* [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration. Linux available, in beta as of 27/11/2023.
|
33 |
+
* [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection.
|
34 |
+
* [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration.
|
35 |
+
* [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server.
|
36 |
+
* [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use.
|
37 |
+
* [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server. Note, as of time of writing (November 27th 2023), ctransformers has not been updated in a long time and does not support many recent models.
|
38 |
+
|
39 |
+
|
40 |
+
<!-- compatibility_gguf start -->
|
41 |
+
## Compatibility
|
42 |
+
|
43 |
+
These quantised GGUFv2 files are compatible with llama.cpp from August 27th onwards, as of commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221)
|
44 |
+
|
45 |
+
<!-- README_GGUF.md-provided-files start -->
|
46 |
+
## Provided files
|
47 |
+
|
48 |
+
| Name | Quant method | Bits/Floats | Size | Max RAM required | Use case |
|
49 |
+
| ---- | ---- | ---- | ---- | ---- | ----- |
|
50 |
+
| [meltemi-7B-instruct-v1_q8_0.gguf](https://huggingface.co/SPAHE/Meltemi-7B-Instruct-v1-GGUF/blob/main/meltemi-7B-instruct-v1_q8_0.gguf) | Q8_0 | 5 | 7.40 GB| 7.30 GB | very low quality loss - recommended |
|
51 |
+
| [meltemi-7B-instruct-v1_f16.gguf](https://huggingface.co/SPAHE/Meltemi-7B-Instruct-v1-GGUF/blob/main/meltemi-7B-instruct-v1_f16.gguf) | F16 | 16 | 13.90 GB| 14.20 GB | very large, extremely low quality loss |
|
52 |
+
| [meltemi-7B-instruct-v1_f32.gguf](https://huggingface.co/SPAHE/Meltemi-7B-Instruct-v1-GGUF/blob/main/meltemi-7B-instruct-v1_f32.gguf) | F32 | 32 | 27.80 GB| 29.30 GB | very large, extremely low quality loss - not recommended |
|
53 |
+
|
54 |
+
**Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
|
55 |
+
|
56 |
+
<!-- README_GGUF.md-provided-files end -->
|
57 |
+
|
58 |
+
<!-- README_GGUF.md-how-to-download start -->
|
59 |
+
## How to download GGUF files
|
60 |
+
|
61 |
+
**Note for manual downloaders:** You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file.
|
62 |
+
|
63 |
+
The following clients/libraries will automatically download models for you, providing a list of available models to choose from:
|
64 |
+
|
65 |
+
* LM Studio
|
66 |
+
* LoLLMS Web UI
|
67 |
+
* Faraday.dev
|
68 |
+
|
69 |
+
### On the command line, including multiple files at once
|
70 |
+
|
71 |
+
I recommend using the `huggingface-hub` Python library:
|
72 |
+
|
73 |
+
```shell
|
74 |
+
pip3 install huggingface-hub
|
75 |
+
```
|
76 |
+
|
77 |
+
Then you can download any individual model file to the current directory, at high speed, with a command like this:
|
78 |
+
|
79 |
+
```shell
|
80 |
+
huggingface-cli download SPAHE/Meltemi-7B-Instruct-v1-GGUF meltemi-7B-instruct-v1_q8_0.gguf --local-dir . --local-dir-use-symlinks False
|
81 |
+
```
|
82 |
+
|
83 |
+
<!-- original-model-card start -->
|
84 |
+
# Original model card: ilsp's Meltemi 7B Instruct v1
|
85 |
+
|
86 |
+
# Meltemi Instruct Large Language Model for the Greek language
|
87 |
+
|
88 |
+
We present Meltemi-7B-Instruct-v1 Large Language Model (LLM), an instruct fine-tuned version of [Meltemi-7B-v1](https://huggingface.co/ilsp/Meltemi-7B-v1).
|
89 |
+
|
90 |
+
|
91 |
+
# Model Information
|
92 |
+
|
93 |
+
- Vocabulary extension of the Mistral-7b tokenizer with Greek tokens
|
94 |
+
- 8192 context length
|
95 |
+
- Fine-tuned with 100k Greek machine translated instructions extracted from:
|
96 |
+
* [Open-Platypus](https://huggingface.co/datasets/garage-bAInd/Open-Platypus) (only subsets with permissive licenses)
|
97 |
+
* [Evol-Instruct](https://huggingface.co/datasets/WizardLM/WizardLM_evol_instruct_V2_196k)
|
98 |
+
* [Capybara](https://huggingface.co/datasets/LDJnr/Capybara)
|
99 |
+
* A hand-crafted Greek dataset with multi-turn examples steering the instruction-tuned model towards safe and harmless responses
|
100 |
+
- Our SFT procedure is based on the [Hugging Face finetuning recipes](https://github.com/huggingface/alignment-handbook)
|
101 |
+
|
102 |
+
|
103 |
+
# Instruction format
|
104 |
+
The prompt format is the same as the [Zephyr](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta) format and can be
|
105 |
+
utilized through the tokenizer's [chat template](https://huggingface.co/docs/transformers/main/chat_templating) functionality as follows:
|
106 |
+
|
107 |
+
```python
|
108 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
109 |
+
|
110 |
+
device = "cuda" # the device to load the model onto
|
111 |
+
|
112 |
+
model = AutoModelForCausalLM.from_pretrained("ilsp/Meltemi-7B-Instruct-v1")
|
113 |
+
tokenizer = AutoTokenizer.from_pretrained("ilsp/Meltemi-7B-Instruct-v1")
|
114 |
+
|
115 |
+
model.to(device)
|
116 |
+
|
117 |
+
messages = [
|
118 |
+
{"role": "system", "content": "Είσαι το Μελτέμι, ένα γλωσσικό μοντέλο για την ελληνική γλώσσα. Είσαι ιδιαίτερα βοηθητικό προς την χρήστρια ή τον χρήστη και δίνεις σύντομες αλλά επαρκώς περιεκτικές απαντήσεις. Απάντα με προσοχή, ευγένεια, αμεροληψία, ειλικρίνεια και σεβασμό προς την χρήστρια ή τον χρήστη."},
|
119 |
+
{"role": "user", "content": "Πες μου αν έχεις συνείδηση."},
|
120 |
+
]
|
121 |
+
|
122 |
+
# Through the default chat template this translates to
|
123 |
+
#
|
124 |
+
# <|system|>
|
125 |
+
# Είσαι το Μελτέμι, ένα γλωσσικό μοντέλο για την ελληνική γλώσσα. Είσαι ιδιαίτερα βοηθητικό προς την χρήστρια ή τον χρήστη και δίνεις σύντομες αλλά επαρκώς περιεκτικές απαντήσεις. Απάντα με προσοχή, ευγένεια, αμεροληψία, ειλικρίνεια και σεβασμό προς την χρήστρια ή τον χρήστη.</s>
|
126 |
+
# <|user|>
|
127 |
+
# Πες μου αν έχεις συνείδηση.</s>
|
128 |
+
# <|assistant|>
|
129 |
+
#
|
130 |
+
|
131 |
+
prompt = tokenizer.apply_chat_template(messages, return_tensors="pt")
|
132 |
+
input_prompt = prompt.to(device)
|
133 |
+
outputs = model.generate(input_prompt, max_new_tokens=256, do_sample=True)
|
134 |
+
|
135 |
+
print(tokenizer.batch_decode(outputs)[0])
|
136 |
+
# Ως μοντέλο γλώσσας AI, δεν έχω τη δυνατότητα να αντιληφθώ ή να βιώσω συναισθήματα όπως η συνείδηση ή η επίγνωση. Ωστόσο, μπορώ να σας βοηθήσω με οποιεσδήποτε ερωτήσεις μπορεί να έχετε σχετικά με την τεχνητή νοημοσύνη και τις εφαρμογές της.
|
137 |
+
|
138 |
+
messages.extend([
|
139 |
+
{"role": "assistant", "content": tokenizer.batch_decode(outputs)[0]},
|
140 |
+
{"role": "user", "content": "Πιστεύεις πως οι άνθρωποι πρέπει να φοβούνται την τεχνητή νοημοσύνη;"}
|
141 |
+
])
|
142 |
+
|
143 |
+
# Through the default chat template this translates to
|
144 |
+
#
|
145 |
+
# <|system|>
|
146 |
+
# Είσαι το Μελτέμι, ένα γλωσσικό μοντέλο για την ελληνική γλώσσα. Είσαι ιδιαίτερα βοηθητικό προς την χρήστρια ή τον χρήστη και δίνεις σύντομες αλλά επαρκώς περιεκτικές απαντήσεις. Απάντα με προσοχή, ευγένεια, αμεροληψία, ειλικρίνεια και σεβασμό προς την χρήστρια ή τον χρήστη.</s>
|
147 |
+
# <|user|>
|
148 |
+
# Πες μου αν έχεις συνείδηση.</s>
|
149 |
+
# <|assistant|>
|
150 |
+
# Ως μοντέλο γλώσσας AI, δεν έχω τη δυνατότητα να αντιληφθώ ή να βιώσω συναισθήματα όπως η συνείδηση ή η επίγνωση. Ωστόσο, μπορώ να σας βοηθήσω με οποιεσδήποτε ερωτήσεις μπορεί να έχετε σχετικά με την τεχνητή νοημοσύνη και τις εφαρμογές της.</s>
|
151 |
+
# <|user|>
|
152 |
+
# Πιστεύεις πως οι άνθρωποι πρέπει να φοβούνται την τεχνητή νοημοσύνη;</s>
|
153 |
+
# <|assistant|>
|
154 |
+
#
|
155 |
+
|
156 |
+
prompt = tokenizer.apply_chat_template(messages, return_tensors="pt")
|
157 |
+
input_prompt = prompt.to(device)
|
158 |
+
outputs = model.generate(input_prompt, max_new_tokens=256, do_sample=True)
|
159 |
+
|
160 |
+
print(tokenizer.batch_decode(outputs)[0])
|
161 |
+
```
|
162 |
+
|
163 |
+
# Evaluation
|
164 |
+
|
165 |
+
The evaluation suite we created includes 6 test sets. The suite is integrated with [lm-eval-harness](https://github.com/EleutherAI/lm-evaluation-harness).
|
166 |
+
|
167 |
+
Our evaluation suite includes:
|
168 |
+
* Four machine-translated versions ([ARC Greek](https://huggingface.co/datasets/ilsp/arc_greek), [Truthful QA Greek](https://huggingface.co/datasets/ilsp/truthful_qa_greek), [HellaSwag Greek](https://huggingface.co/datasets/ilsp/hellaswag_greek), [MMLU Greek](https://huggingface.co/datasets/ilsp/mmlu_greek)) of established English benchmarks for language understanding and reasoning ([ARC Challenge](https://arxiv.org/abs/1803.05457), [Truthful QA](https://arxiv.org/abs/2109.07958), [Hellaswag](https://arxiv.org/abs/1905.07830), [MMLU](https://arxiv.org/abs/2009.03300)).
|
169 |
+
* An existing benchmark for question answering in Greek ([Belebele](https://arxiv.org/abs/2308.16884))
|
170 |
+
* A novel benchmark created by the ILSP team for medical question answering based on the medical exams of [DOATAP](https://www.doatap.gr) ([Medical MCQA](https://huggingface.co/datasets/ilsp/medical_mcqa_greek)).
|
171 |
+
|
172 |
+
Our evaluation for Meltemi-7b is performed in a few-shot setting, consistent with the settings in the [Open LLM leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). We can see that our training enhances performance across all Greek test sets by a **+14.9%** average improvement. The results for the Greek test sets are shown in the following table:
|
173 |
+
|
174 |
+
| | Medical MCQA EL (15-shot) | Belebele EL (5-shot) | HellaSwag EL (10-shot) | ARC-Challenge EL (25-shot) | TruthfulQA MC2 EL (0-shot) | MMLU EL (5-shot) | Average |
|
175 |
+
|----------------|----------------|-------------|--------------|------------------|-------------------|---------|---------|
|
176 |
+
| Mistral 7B | 29.8% | 45.0% | 36.5% | 27.1% | 45.8% | 35% | 36.5% |
|
177 |
+
| Meltemi 7B | 41.0% | 63.6% | 61.6% | 43.2% | 52.1% | 47% | 51.4% |
|
178 |
+
|
179 |
+
|
180 |
+
# Ethical Considerations
|
181 |
+
|
182 |
+
This model has not been aligned with human preferences, and therefore might generate misleading, harmful, and toxic content.
|
183 |
+
|
184 |
+
|
185 |
+
# Acknowledgements
|
186 |
+
|
187 |
+
The ILSP team utilized Amazon’s cloud computing services, which were made available via GRNET under the [OCRE Cloud framework](https://www.ocre-project.eu/), providing Amazon Web Services for the Greek Academic and Research Community.
|
188 |
+
<!-- original-model-card end -->
|