SMG0's picture
update model card README.md
8322b65
|
raw
history blame
2.17 kB
metadata
base_model: aubmindlab/bert-base-arabertv02-twitter
tags:
  - generated_from_trainer
metrics:
  - f1
  - accuracy
model-index:
  - name: Model4_arabertv2_base_T2_WS_A100
    results: []

Model4_arabertv2_base_T2_WS_A100

This model is a fine-tuned version of aubmindlab/bert-base-arabertv02-twitter on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0654
  • F1: 0.8501
  • Roc Auc: 0.9178
  • Accuracy: 0.7616

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss F1 Roc Auc Accuracy
No log 1.0 193 0.1020 0.7502 0.8274 0.6443
No log 2.0 386 0.0759 0.8068 0.8678 0.7114
0.1069 3.0 579 0.0728 0.8240 0.8890 0.7393
0.1069 4.0 772 0.0670 0.8418 0.9112 0.7635
0.1069 5.0 965 0.0654 0.8501 0.9178 0.7616
0.0318 6.0 1158 0.0669 0.8467 0.9197 0.7579
0.0318 7.0 1351 0.0686 0.8471 0.9190 0.7672
0.0141 8.0 1544 0.0705 0.8493 0.9259 0.7561
0.0141 9.0 1737 0.0732 0.8450 0.9248 0.7486

Framework versions

  • Transformers 4.31.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.4
  • Tokenizers 0.13.3