boolq_model_v2 / README.md
SG1123's picture
End of training
2842280
metadata
license: mit
base_model: roberta-base
tags:
  - generated_from_trainer
datasets:
  - super_glue
model-index:
  - name: boolq_model_v2
    results: []

boolq_model_v2

This model is a fine-tuned version of roberta-base on the super_glue dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5937

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss
0.6242 1.0 590 0.5122
0.4715 2.0 1180 0.4762
0.3823 3.0 1770 0.5141
0.3196 4.0 2360 0.5855
0.2455 5.0 2950 0.5937

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0