|
from typing import Any, Dict, Optional
|
|
from diffusers.models import AutoencoderKL, UNet2DConditionModel
|
|
from diffusers.schedulers import KarrasDiffusionSchedulers
|
|
|
|
import numpy
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.utils.checkpoint
|
|
import torch.distributed
|
|
import transformers
|
|
from collections import OrderedDict
|
|
from PIL import Image
|
|
from torchvision import transforms
|
|
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
|
|
|
|
import diffusers
|
|
from diffusers import (
|
|
AutoencoderKL,
|
|
DDPMScheduler,
|
|
DiffusionPipeline,
|
|
EulerAncestralDiscreteScheduler,
|
|
UNet2DConditionModel,
|
|
ImagePipelineOutput
|
|
)
|
|
from diffusers.image_processor import VaeImageProcessor
|
|
from diffusers.models.attention_processor import Attention, AttnProcessor, XFormersAttnProcessor, AttnProcessor2_0
|
|
from diffusers.utils.import_utils import is_xformers_available
|
|
|
|
|
|
def to_rgb_image(maybe_rgba: Image.Image):
|
|
if maybe_rgba.mode == 'RGB':
|
|
return maybe_rgba
|
|
elif maybe_rgba.mode == 'RGBA':
|
|
rgba = maybe_rgba
|
|
img = numpy.random.randint(255, 256, size=[rgba.size[1], rgba.size[0], 3], dtype=numpy.uint8)
|
|
img = Image.fromarray(img, 'RGB')
|
|
img.paste(rgba, mask=rgba.getchannel('A'))
|
|
return img
|
|
else:
|
|
raise ValueError("Unsupported image type.", maybe_rgba.mode)
|
|
|
|
|
|
class ReferenceOnlyAttnProc(torch.nn.Module):
|
|
def __init__(
|
|
self,
|
|
chained_proc,
|
|
enabled=False,
|
|
name=None
|
|
) -> None:
|
|
super().__init__()
|
|
self.enabled = enabled
|
|
self.chained_proc = chained_proc
|
|
self.name = name
|
|
|
|
def __call__(
|
|
self, attn: Attention, hidden_states, encoder_hidden_states=None, attention_mask=None,
|
|
mode="w", ref_dict: dict = None, is_cfg_guidance = False
|
|
) -> Any:
|
|
if encoder_hidden_states is None:
|
|
encoder_hidden_states = hidden_states
|
|
if self.enabled and is_cfg_guidance:
|
|
res0 = self.chained_proc(attn, hidden_states[:1], encoder_hidden_states[:1], attention_mask)
|
|
hidden_states = hidden_states[1:]
|
|
encoder_hidden_states = encoder_hidden_states[1:]
|
|
if self.enabled:
|
|
if mode == 'w':
|
|
ref_dict[self.name] = encoder_hidden_states
|
|
elif mode == 'r':
|
|
encoder_hidden_states = torch.cat([encoder_hidden_states, ref_dict.pop(self.name)], dim=1)
|
|
elif mode == 'm':
|
|
encoder_hidden_states = torch.cat([encoder_hidden_states, ref_dict[self.name]], dim=1)
|
|
else:
|
|
assert False, mode
|
|
res = self.chained_proc(attn, hidden_states, encoder_hidden_states, attention_mask)
|
|
if self.enabled and is_cfg_guidance:
|
|
res = torch.cat([res0, res])
|
|
return res
|
|
|
|
|
|
class RefOnlyNoisedUNet(torch.nn.Module):
|
|
def __init__(self, unet: UNet2DConditionModel, train_sched: DDPMScheduler, val_sched: EulerAncestralDiscreteScheduler) -> None:
|
|
super().__init__()
|
|
self.unet = unet
|
|
self.train_sched = train_sched
|
|
self.val_sched = val_sched
|
|
|
|
unet_lora_attn_procs = dict()
|
|
for name, _ in unet.attn_processors.items():
|
|
if torch.__version__ >= '2.0':
|
|
default_attn_proc = AttnProcessor2_0()
|
|
elif is_xformers_available():
|
|
default_attn_proc = XFormersAttnProcessor()
|
|
else:
|
|
default_attn_proc = AttnProcessor()
|
|
unet_lora_attn_procs[name] = ReferenceOnlyAttnProc(
|
|
default_attn_proc, enabled=name.endswith("attn1.processor"), name=name
|
|
)
|
|
unet.set_attn_processor(unet_lora_attn_procs)
|
|
|
|
def __getattr__(self, name: str):
|
|
try:
|
|
return super().__getattr__(name)
|
|
except AttributeError:
|
|
return getattr(self.unet, name)
|
|
|
|
def forward_cond(self, noisy_cond_lat, timestep, encoder_hidden_states, class_labels, ref_dict, is_cfg_guidance, **kwargs):
|
|
if is_cfg_guidance:
|
|
encoder_hidden_states = encoder_hidden_states[1:]
|
|
class_labels = class_labels[1:]
|
|
self.unet(
|
|
noisy_cond_lat, timestep,
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
class_labels=class_labels,
|
|
cross_attention_kwargs=dict(mode="w", ref_dict=ref_dict),
|
|
**kwargs
|
|
)
|
|
|
|
def forward(
|
|
self, sample, timestep, encoder_hidden_states, class_labels=None,
|
|
*args, cross_attention_kwargs,
|
|
down_block_res_samples=None, mid_block_res_sample=None,
|
|
**kwargs
|
|
):
|
|
cond_lat = cross_attention_kwargs['cond_lat']
|
|
is_cfg_guidance = cross_attention_kwargs.get('is_cfg_guidance', False)
|
|
noise = torch.randn_like(cond_lat)
|
|
if self.training:
|
|
noisy_cond_lat = self.train_sched.add_noise(cond_lat, noise, timestep)
|
|
noisy_cond_lat = self.train_sched.scale_model_input(noisy_cond_lat, timestep)
|
|
else:
|
|
noisy_cond_lat = self.val_sched.add_noise(cond_lat, noise, timestep.reshape(-1))
|
|
noisy_cond_lat = self.val_sched.scale_model_input(noisy_cond_lat, timestep.reshape(-1))
|
|
ref_dict = {}
|
|
self.forward_cond(
|
|
noisy_cond_lat, timestep,
|
|
encoder_hidden_states, class_labels,
|
|
ref_dict, is_cfg_guidance, **kwargs
|
|
)
|
|
weight_dtype = self.unet.dtype
|
|
return self.unet(
|
|
sample, timestep,
|
|
encoder_hidden_states, *args,
|
|
class_labels=class_labels,
|
|
cross_attention_kwargs=dict(mode="r", ref_dict=ref_dict, is_cfg_guidance=is_cfg_guidance),
|
|
down_block_additional_residuals=[
|
|
sample.to(dtype=weight_dtype) for sample in down_block_res_samples
|
|
] if down_block_res_samples is not None else None,
|
|
mid_block_additional_residual=(
|
|
mid_block_res_sample.to(dtype=weight_dtype)
|
|
if mid_block_res_sample is not None else None
|
|
),
|
|
**kwargs
|
|
)
|
|
|
|
|
|
def scale_latents(latents):
|
|
latents = (latents - 0.22) * 0.75
|
|
return latents
|
|
|
|
|
|
def unscale_latents(latents):
|
|
latents = latents / 0.75 + 0.22
|
|
return latents
|
|
|
|
|
|
def scale_image(image):
|
|
image = image * 0.5 / 0.8
|
|
return image
|
|
|
|
|
|
def unscale_image(image):
|
|
image = image / 0.5 * 0.8
|
|
return image
|
|
|
|
|
|
class DepthControlUNet(torch.nn.Module):
|
|
def __init__(self, unet: RefOnlyNoisedUNet) -> None:
|
|
super().__init__()
|
|
self.unet = unet
|
|
self.controlnet = diffusers.ControlNetModel.from_unet(unet.unet)
|
|
DefaultAttnProc = AttnProcessor2_0
|
|
if is_xformers_available():
|
|
DefaultAttnProc = XFormersAttnProcessor
|
|
self.controlnet.set_attn_processor(DefaultAttnProc())
|
|
|
|
def __getattr__(self, name: str):
|
|
try:
|
|
return super().__getattr__(name)
|
|
except AttributeError:
|
|
return getattr(self.unet, name)
|
|
|
|
def forward(self, sample, timestep, encoder_hidden_states, class_labels=None, *args, cross_attention_kwargs: dict, **kwargs):
|
|
cross_attention_kwargs = dict(cross_attention_kwargs)
|
|
control_depth = cross_attention_kwargs.pop('control_depth')
|
|
down_block_res_samples, mid_block_res_sample = self.controlnet(
|
|
sample,
|
|
timestep,
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
controlnet_cond=control_depth,
|
|
return_dict=False,
|
|
)
|
|
return self.unet(
|
|
sample,
|
|
timestep,
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
down_block_res_samples=down_block_res_samples,
|
|
mid_block_res_sample=mid_block_res_sample,
|
|
cross_attention_kwargs=cross_attention_kwargs
|
|
)
|
|
|
|
|
|
class ModuleListDict(torch.nn.Module):
|
|
def __init__(self, procs: dict) -> None:
|
|
super().__init__()
|
|
self.keys = sorted(procs.keys())
|
|
self.values = torch.nn.ModuleList(procs[k] for k in self.keys)
|
|
|
|
def __getitem__(self, key):
|
|
return self.values[self.keys.index(key)]
|
|
|
|
|
|
class SuperNet(torch.nn.Module):
|
|
def __init__(self, state_dict: Dict[str, torch.Tensor]):
|
|
super().__init__()
|
|
state_dict = OrderedDict((k, state_dict[k]) for k in sorted(state_dict.keys()))
|
|
self.layers = torch.nn.ModuleList(state_dict.values())
|
|
self.mapping = dict(enumerate(state_dict.keys()))
|
|
self.rev_mapping = {v: k for k, v in enumerate(state_dict.keys())}
|
|
|
|
|
|
self.split_keys = [".processor", ".self_attn"]
|
|
|
|
|
|
|
|
def map_to(module, state_dict, *args, **kwargs):
|
|
new_state_dict = {}
|
|
for key, value in state_dict.items():
|
|
num = int(key.split(".")[1])
|
|
new_key = key.replace(f"layers.{num}", module.mapping[num])
|
|
new_state_dict[new_key] = value
|
|
|
|
return new_state_dict
|
|
|
|
def remap_key(key, state_dict):
|
|
for k in self.split_keys:
|
|
if k in key:
|
|
return key.split(k)[0] + k
|
|
return key.split('.')[0]
|
|
|
|
def map_from(module, state_dict, *args, **kwargs):
|
|
all_keys = list(state_dict.keys())
|
|
for key in all_keys:
|
|
replace_key = remap_key(key, state_dict)
|
|
new_key = key.replace(replace_key, f"layers.{module.rev_mapping[replace_key]}")
|
|
state_dict[new_key] = state_dict[key]
|
|
del state_dict[key]
|
|
|
|
self._register_state_dict_hook(map_to)
|
|
self._register_load_state_dict_pre_hook(map_from, with_module=True)
|
|
|
|
|
|
class Zero123PlusPipeline(diffusers.StableDiffusionPipeline):
|
|
tokenizer: transformers.CLIPTokenizer
|
|
text_encoder: transformers.CLIPTextModel
|
|
vision_encoder: transformers.CLIPVisionModelWithProjection
|
|
|
|
feature_extractor_clip: transformers.CLIPImageProcessor
|
|
unet: UNet2DConditionModel
|
|
scheduler: diffusers.schedulers.KarrasDiffusionSchedulers
|
|
|
|
vae: AutoencoderKL
|
|
ramping: nn.Linear
|
|
|
|
feature_extractor_vae: transformers.CLIPImageProcessor
|
|
|
|
depth_transforms_multi = transforms.Compose([
|
|
transforms.ToTensor(),
|
|
transforms.Normalize([0.5], [0.5])
|
|
])
|
|
|
|
def __init__(
|
|
self,
|
|
vae: AutoencoderKL,
|
|
text_encoder: CLIPTextModel,
|
|
tokenizer: CLIPTokenizer,
|
|
unet: UNet2DConditionModel,
|
|
scheduler: KarrasDiffusionSchedulers,
|
|
vision_encoder: transformers.CLIPVisionModelWithProjection,
|
|
feature_extractor_clip: CLIPImageProcessor,
|
|
feature_extractor_vae: CLIPImageProcessor,
|
|
ramping_coefficients: Optional[list] = None,
|
|
safety_checker=None,
|
|
):
|
|
DiffusionPipeline.__init__(self)
|
|
|
|
self.register_modules(
|
|
vae=vae, text_encoder=text_encoder, tokenizer=tokenizer,
|
|
unet=unet, scheduler=scheduler, safety_checker=None,
|
|
vision_encoder=vision_encoder,
|
|
feature_extractor_clip=feature_extractor_clip,
|
|
feature_extractor_vae=feature_extractor_vae
|
|
)
|
|
self.register_to_config(ramping_coefficients=ramping_coefficients)
|
|
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
|
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
|
|
|
def prepare(self):
|
|
train_sched = DDPMScheduler.from_config(self.scheduler.config)
|
|
if isinstance(self.unet, UNet2DConditionModel):
|
|
self.unet = RefOnlyNoisedUNet(self.unet, train_sched, self.scheduler).eval()
|
|
|
|
def add_controlnet(self):
|
|
self.unet = DepthControlUNet(self.unet)
|
|
return SuperNet(OrderedDict([('controlnet', self.unet.controlnet)]))
|
|
|
|
def encode_condition_image(self, image: torch.Tensor):
|
|
image = self.vae.encode(image).latent_dist.sample()
|
|
return image
|
|
|
|
@torch.no_grad()
|
|
def __call__(
|
|
self,
|
|
image: Image.Image = None,
|
|
prompt = "",
|
|
*args,
|
|
num_images_per_prompt: Optional[int] = 1,
|
|
guidance_scale=4.0,
|
|
depth_image: Image.Image = None,
|
|
output_type: Optional[str] = "pil",
|
|
width=960,
|
|
height=960,
|
|
num_inference_steps=28,
|
|
return_dict=True,
|
|
**kwargs
|
|
):
|
|
self.prepare()
|
|
if image is None:
|
|
raise ValueError("Inputting embeddings not supported for this pipeline. Please pass an image.")
|
|
assert not isinstance(image, torch.Tensor)
|
|
image_1 = self.feature_extractor_vae(images=image, return_tensors="pt").pixel_values
|
|
image_2 = self.feature_extractor_clip(images=image, return_tensors="pt").pixel_values
|
|
if depth_image is not None and hasattr(self.unet, "controlnet"):
|
|
depth_image = self.depth_transforms_multi(depth_image).to(
|
|
device=self.unet.controlnet.device, dtype=self.unet.controlnet.dtype
|
|
)
|
|
image = image_1.to(device=self.vae.device, dtype=self.vae.dtype)
|
|
image_2 = image_2.to(device=self.vae.device, dtype=self.vae.dtype)
|
|
cond_lat = self.encode_condition_image(image)
|
|
if guidance_scale > 1:
|
|
negative_lat = self.encode_condition_image(torch.zeros_like(image))
|
|
cond_lat = torch.cat([negative_lat, cond_lat])
|
|
encoded = self.vision_encoder(image_2, output_hidden_states=False)
|
|
global_embeds = encoded.image_embeds
|
|
global_embeds = global_embeds.unsqueeze(-2)
|
|
|
|
encoder_hidden_states = self._encode_prompt(
|
|
prompt,
|
|
self.device,
|
|
num_images_per_prompt,
|
|
False
|
|
)
|
|
ramp = global_embeds.new_tensor(self.config.ramping_coefficients).unsqueeze(-1)
|
|
encoder_hidden_states = encoder_hidden_states + global_embeds * ramp
|
|
cak = dict(cond_lat=cond_lat)
|
|
if hasattr(self.unet, "controlnet"):
|
|
cak['control_depth'] = depth_image
|
|
latents: torch.Tensor = super().__call__(
|
|
None,
|
|
*args,
|
|
cross_attention_kwargs=cak,
|
|
guidance_scale=guidance_scale,
|
|
num_images_per_prompt=num_images_per_prompt,
|
|
prompt_embeds=encoder_hidden_states,
|
|
num_inference_steps=num_inference_steps,
|
|
output_type='latent',
|
|
width=width,
|
|
height=height,
|
|
**kwargs
|
|
).images
|
|
latents = unscale_latents(latents)
|
|
if not output_type == "latent":
|
|
image = unscale_image(self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0])
|
|
else:
|
|
image = latents
|
|
|
|
image = self.image_processor.postprocess(image, output_type=output_type)
|
|
if not return_dict:
|
|
return (image,)
|
|
|
|
return ImagePipelineOutput(images=image)
|
|
|