Upload inference.py
Browse files- inference.py +390 -0
inference.py
ADDED
@@ -0,0 +1,390 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any, Dict, Optional
|
2 |
+
from diffusers.models import AutoencoderKL, UNet2DConditionModel
|
3 |
+
from diffusers.schedulers import KarrasDiffusionSchedulers
|
4 |
+
|
5 |
+
import numpy
|
6 |
+
import torch
|
7 |
+
import torch.nn as nn
|
8 |
+
import torch.utils.checkpoint
|
9 |
+
import torch.distributed
|
10 |
+
import transformers
|
11 |
+
from collections import OrderedDict
|
12 |
+
from PIL import Image
|
13 |
+
from torchvision import transforms
|
14 |
+
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
|
15 |
+
|
16 |
+
import diffusers
|
17 |
+
from diffusers import (
|
18 |
+
AutoencoderKL,
|
19 |
+
DDPMScheduler,
|
20 |
+
DiffusionPipeline,
|
21 |
+
EulerAncestralDiscreteScheduler,
|
22 |
+
UNet2DConditionModel,
|
23 |
+
ImagePipelineOutput
|
24 |
+
)
|
25 |
+
from diffusers.image_processor import VaeImageProcessor
|
26 |
+
from diffusers.models.attention_processor import Attention, AttnProcessor, XFormersAttnProcessor, AttnProcessor2_0
|
27 |
+
from diffusers.utils.import_utils import is_xformers_available
|
28 |
+
|
29 |
+
|
30 |
+
def to_rgb_image(maybe_rgba: Image.Image):
|
31 |
+
if maybe_rgba.mode == 'RGB':
|
32 |
+
return maybe_rgba
|
33 |
+
elif maybe_rgba.mode == 'RGBA':
|
34 |
+
rgba = maybe_rgba
|
35 |
+
img = numpy.random.randint(255, 256, size=[rgba.size[1], rgba.size[0], 3], dtype=numpy.uint8)
|
36 |
+
img = Image.fromarray(img, 'RGB')
|
37 |
+
img.paste(rgba, mask=rgba.getchannel('A'))
|
38 |
+
return img
|
39 |
+
else:
|
40 |
+
raise ValueError("Unsupported image type.", maybe_rgba.mode)
|
41 |
+
|
42 |
+
|
43 |
+
class ReferenceOnlyAttnProc(torch.nn.Module):
|
44 |
+
def __init__(
|
45 |
+
self,
|
46 |
+
chained_proc,
|
47 |
+
enabled=False,
|
48 |
+
name=None
|
49 |
+
) -> None:
|
50 |
+
super().__init__()
|
51 |
+
self.enabled = enabled
|
52 |
+
self.chained_proc = chained_proc
|
53 |
+
self.name = name
|
54 |
+
|
55 |
+
def __call__(
|
56 |
+
self, attn: Attention, hidden_states, encoder_hidden_states=None, attention_mask=None,
|
57 |
+
mode="w", ref_dict: dict = None, is_cfg_guidance = False
|
58 |
+
) -> Any:
|
59 |
+
if encoder_hidden_states is None:
|
60 |
+
encoder_hidden_states = hidden_states
|
61 |
+
if self.enabled and is_cfg_guidance:
|
62 |
+
res0 = self.chained_proc(attn, hidden_states[:1], encoder_hidden_states[:1], attention_mask)
|
63 |
+
hidden_states = hidden_states[1:]
|
64 |
+
encoder_hidden_states = encoder_hidden_states[1:]
|
65 |
+
if self.enabled:
|
66 |
+
if mode == 'w':
|
67 |
+
ref_dict[self.name] = encoder_hidden_states
|
68 |
+
elif mode == 'r':
|
69 |
+
encoder_hidden_states = torch.cat([encoder_hidden_states, ref_dict.pop(self.name)], dim=1)
|
70 |
+
elif mode == 'm':
|
71 |
+
encoder_hidden_states = torch.cat([encoder_hidden_states, ref_dict[self.name]], dim=1)
|
72 |
+
else:
|
73 |
+
assert False, mode
|
74 |
+
res = self.chained_proc(attn, hidden_states, encoder_hidden_states, attention_mask)
|
75 |
+
if self.enabled and is_cfg_guidance:
|
76 |
+
res = torch.cat([res0, res])
|
77 |
+
return res
|
78 |
+
|
79 |
+
|
80 |
+
class RefOnlyNoisedUNet(torch.nn.Module):
|
81 |
+
def __init__(self, unet: UNet2DConditionModel, train_sched: DDPMScheduler, val_sched: EulerAncestralDiscreteScheduler) -> None:
|
82 |
+
super().__init__()
|
83 |
+
self.unet = unet
|
84 |
+
self.train_sched = train_sched
|
85 |
+
self.val_sched = val_sched
|
86 |
+
|
87 |
+
unet_lora_attn_procs = dict()
|
88 |
+
for name, _ in unet.attn_processors.items():
|
89 |
+
if torch.__version__ >= '2.0':
|
90 |
+
default_attn_proc = AttnProcessor2_0()
|
91 |
+
elif is_xformers_available():
|
92 |
+
default_attn_proc = XFormersAttnProcessor()
|
93 |
+
else:
|
94 |
+
default_attn_proc = AttnProcessor()
|
95 |
+
unet_lora_attn_procs[name] = ReferenceOnlyAttnProc(
|
96 |
+
default_attn_proc, enabled=name.endswith("attn1.processor"), name=name
|
97 |
+
)
|
98 |
+
unet.set_attn_processor(unet_lora_attn_procs)
|
99 |
+
|
100 |
+
def __getattr__(self, name: str):
|
101 |
+
try:
|
102 |
+
return super().__getattr__(name)
|
103 |
+
except AttributeError:
|
104 |
+
return getattr(self.unet, name)
|
105 |
+
|
106 |
+
def forward_cond(self, noisy_cond_lat, timestep, encoder_hidden_states, class_labels, ref_dict, is_cfg_guidance, **kwargs):
|
107 |
+
if is_cfg_guidance:
|
108 |
+
encoder_hidden_states = encoder_hidden_states[1:]
|
109 |
+
class_labels = class_labels[1:]
|
110 |
+
self.unet(
|
111 |
+
noisy_cond_lat, timestep,
|
112 |
+
encoder_hidden_states=encoder_hidden_states,
|
113 |
+
class_labels=class_labels,
|
114 |
+
cross_attention_kwargs=dict(mode="w", ref_dict=ref_dict),
|
115 |
+
**kwargs
|
116 |
+
)
|
117 |
+
|
118 |
+
def forward(
|
119 |
+
self, sample, timestep, encoder_hidden_states, class_labels=None,
|
120 |
+
*args, cross_attention_kwargs,
|
121 |
+
down_block_res_samples=None, mid_block_res_sample=None,
|
122 |
+
**kwargs
|
123 |
+
):
|
124 |
+
cond_lat = cross_attention_kwargs['cond_lat']
|
125 |
+
is_cfg_guidance = cross_attention_kwargs.get('is_cfg_guidance', False)
|
126 |
+
noise = torch.randn_like(cond_lat)
|
127 |
+
if self.training:
|
128 |
+
noisy_cond_lat = self.train_sched.add_noise(cond_lat, noise, timestep)
|
129 |
+
noisy_cond_lat = self.train_sched.scale_model_input(noisy_cond_lat, timestep)
|
130 |
+
else:
|
131 |
+
noisy_cond_lat = self.val_sched.add_noise(cond_lat, noise, timestep.reshape(-1))
|
132 |
+
noisy_cond_lat = self.val_sched.scale_model_input(noisy_cond_lat, timestep.reshape(-1))
|
133 |
+
ref_dict = {}
|
134 |
+
self.forward_cond(
|
135 |
+
noisy_cond_lat, timestep,
|
136 |
+
encoder_hidden_states, class_labels,
|
137 |
+
ref_dict, is_cfg_guidance, **kwargs
|
138 |
+
)
|
139 |
+
weight_dtype = self.unet.dtype
|
140 |
+
return self.unet(
|
141 |
+
sample, timestep,
|
142 |
+
encoder_hidden_states, *args,
|
143 |
+
class_labels=class_labels,
|
144 |
+
cross_attention_kwargs=dict(mode="r", ref_dict=ref_dict, is_cfg_guidance=is_cfg_guidance),
|
145 |
+
down_block_additional_residuals=[
|
146 |
+
sample.to(dtype=weight_dtype) for sample in down_block_res_samples
|
147 |
+
] if down_block_res_samples is not None else None,
|
148 |
+
mid_block_additional_residual=(
|
149 |
+
mid_block_res_sample.to(dtype=weight_dtype)
|
150 |
+
if mid_block_res_sample is not None else None
|
151 |
+
),
|
152 |
+
**kwargs
|
153 |
+
)
|
154 |
+
|
155 |
+
|
156 |
+
def scale_latents(latents):
|
157 |
+
latents = (latents - 0.22) * 0.75
|
158 |
+
return latents
|
159 |
+
|
160 |
+
|
161 |
+
def unscale_latents(latents):
|
162 |
+
latents = latents / 0.75 + 0.22
|
163 |
+
return latents
|
164 |
+
|
165 |
+
|
166 |
+
def scale_image(image):
|
167 |
+
image = image * 0.5 / 0.8
|
168 |
+
return image
|
169 |
+
|
170 |
+
|
171 |
+
def unscale_image(image):
|
172 |
+
image = image / 0.5 * 0.8
|
173 |
+
return image
|
174 |
+
|
175 |
+
|
176 |
+
class DepthControlUNet(torch.nn.Module):
|
177 |
+
def __init__(self, unet: RefOnlyNoisedUNet) -> None:
|
178 |
+
super().__init__()
|
179 |
+
self.unet = unet
|
180 |
+
self.controlnet = diffusers.ControlNetModel.from_unet(unet.unet)
|
181 |
+
DefaultAttnProc = AttnProcessor2_0
|
182 |
+
if is_xformers_available():
|
183 |
+
DefaultAttnProc = XFormersAttnProcessor
|
184 |
+
self.controlnet.set_attn_processor(DefaultAttnProc())
|
185 |
+
|
186 |
+
def __getattr__(self, name: str):
|
187 |
+
try:
|
188 |
+
return super().__getattr__(name)
|
189 |
+
except AttributeError:
|
190 |
+
return getattr(self.unet, name)
|
191 |
+
|
192 |
+
def forward(self, sample, timestep, encoder_hidden_states, class_labels=None, *args, cross_attention_kwargs: dict, **kwargs):
|
193 |
+
cross_attention_kwargs = dict(cross_attention_kwargs)
|
194 |
+
control_depth = cross_attention_kwargs.pop('control_depth')
|
195 |
+
down_block_res_samples, mid_block_res_sample = self.controlnet(
|
196 |
+
sample,
|
197 |
+
timestep,
|
198 |
+
encoder_hidden_states=encoder_hidden_states,
|
199 |
+
controlnet_cond=control_depth,
|
200 |
+
return_dict=False,
|
201 |
+
)
|
202 |
+
return self.unet(
|
203 |
+
sample,
|
204 |
+
timestep,
|
205 |
+
encoder_hidden_states=encoder_hidden_states,
|
206 |
+
down_block_res_samples=down_block_res_samples,
|
207 |
+
mid_block_res_sample=mid_block_res_sample,
|
208 |
+
cross_attention_kwargs=cross_attention_kwargs
|
209 |
+
)
|
210 |
+
|
211 |
+
|
212 |
+
class ModuleListDict(torch.nn.Module):
|
213 |
+
def __init__(self, procs: dict) -> None:
|
214 |
+
super().__init__()
|
215 |
+
self.keys = sorted(procs.keys())
|
216 |
+
self.values = torch.nn.ModuleList(procs[k] for k in self.keys)
|
217 |
+
|
218 |
+
def __getitem__(self, key):
|
219 |
+
return self.values[self.keys.index(key)]
|
220 |
+
|
221 |
+
|
222 |
+
class SuperNet(torch.nn.Module):
|
223 |
+
def __init__(self, state_dict: Dict[str, torch.Tensor]):
|
224 |
+
super().__init__()
|
225 |
+
state_dict = OrderedDict((k, state_dict[k]) for k in sorted(state_dict.keys()))
|
226 |
+
self.layers = torch.nn.ModuleList(state_dict.values())
|
227 |
+
self.mapping = dict(enumerate(state_dict.keys()))
|
228 |
+
self.rev_mapping = {v: k for k, v in enumerate(state_dict.keys())}
|
229 |
+
|
230 |
+
# .processor for unet, .self_attn for text encoder
|
231 |
+
self.split_keys = [".processor", ".self_attn"]
|
232 |
+
|
233 |
+
# we add a hook to state_dict() and load_state_dict() so that the
|
234 |
+
# naming fits with `unet.attn_processors`
|
235 |
+
def map_to(module, state_dict, *args, **kwargs):
|
236 |
+
new_state_dict = {}
|
237 |
+
for key, value in state_dict.items():
|
238 |
+
num = int(key.split(".")[1]) # 0 is always "layers"
|
239 |
+
new_key = key.replace(f"layers.{num}", module.mapping[num])
|
240 |
+
new_state_dict[new_key] = value
|
241 |
+
|
242 |
+
return new_state_dict
|
243 |
+
|
244 |
+
def remap_key(key, state_dict):
|
245 |
+
for k in self.split_keys:
|
246 |
+
if k in key:
|
247 |
+
return key.split(k)[0] + k
|
248 |
+
return key.split('.')[0]
|
249 |
+
|
250 |
+
def map_from(module, state_dict, *args, **kwargs):
|
251 |
+
all_keys = list(state_dict.keys())
|
252 |
+
for key in all_keys:
|
253 |
+
replace_key = remap_key(key, state_dict)
|
254 |
+
new_key = key.replace(replace_key, f"layers.{module.rev_mapping[replace_key]}")
|
255 |
+
state_dict[new_key] = state_dict[key]
|
256 |
+
del state_dict[key]
|
257 |
+
|
258 |
+
self._register_state_dict_hook(map_to)
|
259 |
+
self._register_load_state_dict_pre_hook(map_from, with_module=True)
|
260 |
+
|
261 |
+
|
262 |
+
class Zero123PlusPipeline(diffusers.StableDiffusionPipeline):
|
263 |
+
tokenizer: transformers.CLIPTokenizer
|
264 |
+
text_encoder: transformers.CLIPTextModel
|
265 |
+
vision_encoder: transformers.CLIPVisionModelWithProjection
|
266 |
+
|
267 |
+
feature_extractor_clip: transformers.CLIPImageProcessor
|
268 |
+
unet: UNet2DConditionModel
|
269 |
+
scheduler: diffusers.schedulers.KarrasDiffusionSchedulers
|
270 |
+
|
271 |
+
vae: AutoencoderKL
|
272 |
+
ramping: nn.Linear
|
273 |
+
|
274 |
+
feature_extractor_vae: transformers.CLIPImageProcessor
|
275 |
+
|
276 |
+
depth_transforms_multi = transforms.Compose([
|
277 |
+
transforms.ToTensor(),
|
278 |
+
transforms.Normalize([0.5], [0.5])
|
279 |
+
])
|
280 |
+
|
281 |
+
def __init__(
|
282 |
+
self,
|
283 |
+
vae: AutoencoderKL,
|
284 |
+
text_encoder: CLIPTextModel,
|
285 |
+
tokenizer: CLIPTokenizer,
|
286 |
+
unet: UNet2DConditionModel,
|
287 |
+
scheduler: KarrasDiffusionSchedulers,
|
288 |
+
vision_encoder: transformers.CLIPVisionModelWithProjection,
|
289 |
+
feature_extractor_clip: CLIPImageProcessor,
|
290 |
+
feature_extractor_vae: CLIPImageProcessor,
|
291 |
+
ramping_coefficients: Optional[list] = None,
|
292 |
+
safety_checker=None,
|
293 |
+
):
|
294 |
+
DiffusionPipeline.__init__(self)
|
295 |
+
|
296 |
+
self.register_modules(
|
297 |
+
vae=vae, text_encoder=text_encoder, tokenizer=tokenizer,
|
298 |
+
unet=unet, scheduler=scheduler, safety_checker=None,
|
299 |
+
vision_encoder=vision_encoder,
|
300 |
+
feature_extractor_clip=feature_extractor_clip,
|
301 |
+
feature_extractor_vae=feature_extractor_vae
|
302 |
+
)
|
303 |
+
self.register_to_config(ramping_coefficients=ramping_coefficients)
|
304 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
305 |
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
306 |
+
|
307 |
+
def prepare(self):
|
308 |
+
train_sched = DDPMScheduler.from_config(self.scheduler.config)
|
309 |
+
if isinstance(self.unet, UNet2DConditionModel):
|
310 |
+
self.unet = RefOnlyNoisedUNet(self.unet, train_sched, self.scheduler).eval()
|
311 |
+
|
312 |
+
def add_controlnet(self):
|
313 |
+
self.unet = DepthControlUNet(self.unet)
|
314 |
+
return SuperNet(OrderedDict([('controlnet', self.unet.controlnet)]))
|
315 |
+
|
316 |
+
def encode_condition_image(self, image: torch.Tensor):
|
317 |
+
image = self.vae.encode(image).latent_dist.sample()
|
318 |
+
return image
|
319 |
+
|
320 |
+
@torch.no_grad()
|
321 |
+
def __call__(
|
322 |
+
self,
|
323 |
+
image: Image.Image = None,
|
324 |
+
prompt = "",
|
325 |
+
*args,
|
326 |
+
num_images_per_prompt: Optional[int] = 1,
|
327 |
+
guidance_scale=4.0,
|
328 |
+
depth_image: Image.Image = None,
|
329 |
+
output_type: Optional[str] = "pil",
|
330 |
+
width=960,
|
331 |
+
height=960,
|
332 |
+
num_inference_steps=28,
|
333 |
+
return_dict=True,
|
334 |
+
**kwargs
|
335 |
+
):
|
336 |
+
self.prepare()
|
337 |
+
if image is None:
|
338 |
+
raise ValueError("Inputting embeddings not supported for this pipeline. Please pass an image.")
|
339 |
+
assert not isinstance(image, torch.Tensor)
|
340 |
+
image_1 = self.feature_extractor_vae(images=image, return_tensors="pt").pixel_values
|
341 |
+
image_2 = self.feature_extractor_clip(images=image, return_tensors="pt").pixel_values
|
342 |
+
if depth_image is not None and hasattr(self.unet, "controlnet"):
|
343 |
+
depth_image = self.depth_transforms_multi(depth_image).to(
|
344 |
+
device=self.unet.controlnet.device, dtype=self.unet.controlnet.dtype
|
345 |
+
)
|
346 |
+
image = image_1.to(device=self.vae.device, dtype=self.vae.dtype)
|
347 |
+
image_2 = image_2.to(device=self.vae.device, dtype=self.vae.dtype)
|
348 |
+
cond_lat = self.encode_condition_image(image)
|
349 |
+
if guidance_scale > 1:
|
350 |
+
negative_lat = self.encode_condition_image(torch.zeros_like(image))
|
351 |
+
cond_lat = torch.cat([negative_lat, cond_lat])
|
352 |
+
encoded = self.vision_encoder(image_2, output_hidden_states=False)
|
353 |
+
global_embeds = encoded.image_embeds
|
354 |
+
global_embeds = global_embeds.unsqueeze(-2)
|
355 |
+
|
356 |
+
encoder_hidden_states = self._encode_prompt(
|
357 |
+
prompt,
|
358 |
+
self.device,
|
359 |
+
num_images_per_prompt,
|
360 |
+
False
|
361 |
+
)
|
362 |
+
ramp = global_embeds.new_tensor(self.config.ramping_coefficients).unsqueeze(-1)
|
363 |
+
encoder_hidden_states = encoder_hidden_states + global_embeds * ramp
|
364 |
+
cak = dict(cond_lat=cond_lat)
|
365 |
+
if hasattr(self.unet, "controlnet"):
|
366 |
+
cak['control_depth'] = depth_image
|
367 |
+
latents: torch.Tensor = super().__call__(
|
368 |
+
None,
|
369 |
+
*args,
|
370 |
+
cross_attention_kwargs=cak,
|
371 |
+
guidance_scale=guidance_scale,
|
372 |
+
num_images_per_prompt=num_images_per_prompt,
|
373 |
+
prompt_embeds=encoder_hidden_states,
|
374 |
+
num_inference_steps=num_inference_steps,
|
375 |
+
output_type='latent',
|
376 |
+
width=width,
|
377 |
+
height=height,
|
378 |
+
**kwargs
|
379 |
+
).images
|
380 |
+
latents = unscale_latents(latents)
|
381 |
+
if not output_type == "latent":
|
382 |
+
image = unscale_image(self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0])
|
383 |
+
else:
|
384 |
+
image = latents
|
385 |
+
|
386 |
+
image = self.image_processor.postprocess(image, output_type=output_type)
|
387 |
+
if not return_dict:
|
388 |
+
return (image,)
|
389 |
+
|
390 |
+
return ImagePipelineOutput(images=image)
|