metadata
license: gemma
base_model: google/gemma-2-27b
tags:
- trl
- sft
- generated_from_trainer
model-index:
- name: collapse_gemma-2-27b_hs2_accumulate_iter3_sftsd0
results: []
collapse_gemma-2-27b_hs2_accumulate_iter3_sftsd0
This model is a fine-tuned version of google/gemma-2-27b on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.9289
- Num Input Tokens Seen: 13382208
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 8e-06
- train_batch_size: 4
- eval_batch_size: 16
- seed: 0
- gradient_accumulation_steps: 32
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant_with_warmup
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen |
---|---|---|---|---|
No log | 0 | 0 | 1.1282 | 0 |
2.5273 | 0.0186 | 5 | 1.0497 | 239432 |
2.2642 | 0.0371 | 10 | 0.9938 | 490472 |
2.1944 | 0.0557 | 15 | 0.9799 | 738476 |
2.0449 | 0.0742 | 20 | 0.9761 | 991768 |
1.7622 | 0.0928 | 25 | 0.9788 | 1234816 |
1.6823 | 0.1113 | 30 | 0.9860 | 1486428 |
1.5237 | 0.1299 | 35 | 0.9862 | 1735404 |
1.4638 | 0.1484 | 40 | 0.9833 | 1983880 |
1.2775 | 0.1670 | 45 | 0.9803 | 2226820 |
1.246 | 0.1855 | 50 | 0.9762 | 2471660 |
1.1798 | 0.2041 | 55 | 0.9701 | 2723564 |
1.1618 | 0.2226 | 60 | 0.9658 | 2969216 |
1.1255 | 0.2412 | 65 | 0.9656 | 3218648 |
0.902 | 0.2597 | 70 | 0.9609 | 3474940 |
0.873 | 0.2783 | 75 | 0.9577 | 3721068 |
0.7585 | 0.2968 | 80 | 0.9560 | 3977036 |
0.9329 | 0.3154 | 85 | 0.9542 | 4227848 |
0.9888 | 0.3340 | 90 | 0.9544 | 4471040 |
0.8856 | 0.3525 | 95 | 0.9510 | 4719044 |
0.8959 | 0.3711 | 100 | 0.9519 | 4966088 |
0.707 | 0.3896 | 105 | 0.9476 | 5210868 |
0.8089 | 0.4082 | 110 | 0.9476 | 5470016 |
0.7476 | 0.4267 | 115 | 0.9459 | 5718420 |
0.6473 | 0.4453 | 120 | 0.9438 | 5972536 |
0.758 | 0.4638 | 125 | 0.9435 | 6221248 |
0.8454 | 0.4824 | 130 | 0.9403 | 6475340 |
0.7976 | 0.5009 | 135 | 0.9412 | 6727528 |
0.8476 | 0.5195 | 140 | 0.9400 | 6982388 |
0.7554 | 0.5380 | 145 | 0.9387 | 7218200 |
0.7193 | 0.5566 | 150 | 0.9386 | 7466484 |
0.6614 | 0.5751 | 155 | 0.9378 | 7709588 |
0.7586 | 0.5937 | 160 | 0.9344 | 7958964 |
0.769 | 0.6122 | 165 | 0.9353 | 8214680 |
0.6696 | 0.6308 | 170 | 0.9347 | 8457832 |
0.8566 | 0.6494 | 175 | 0.9377 | 8710088 |
0.8531 | 0.6679 | 180 | 0.9346 | 8959260 |
0.8454 | 0.6865 | 185 | 0.9346 | 9216248 |
0.7314 | 0.7050 | 190 | 0.9330 | 9465964 |
0.914 | 0.7236 | 195 | 0.9326 | 9718276 |
0.6292 | 0.7421 | 200 | 0.9335 | 9963556 |
0.683 | 0.7607 | 205 | 0.9348 | 10204596 |
0.5968 | 0.7792 | 210 | 0.9338 | 10460212 |
0.7731 | 0.7978 | 215 | 0.9338 | 10712008 |
0.707 | 0.8163 | 220 | 0.9318 | 10955092 |
0.7059 | 0.8349 | 225 | 0.9348 | 11197300 |
0.6878 | 0.8534 | 230 | 0.9301 | 11440440 |
0.6978 | 0.8720 | 235 | 0.9312 | 11685992 |
0.8379 | 0.8905 | 240 | 0.9294 | 11928976 |
0.8208 | 0.9091 | 245 | 0.9331 | 12185160 |
0.7653 | 0.9276 | 250 | 0.9314 | 12430192 |
0.7021 | 0.9462 | 255 | 0.9295 | 12684252 |
0.78 | 0.9647 | 260 | 0.9327 | 12932032 |
0.6731 | 0.9833 | 265 | 0.9279 | 13180768 |
Framework versions
- Transformers 4.44.0
- Pytorch 2.4.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1