Rudra-ai commited on
Commit
26ba761
·
verified ·
1 Parent(s): 50eb437

Model save

Browse files
README.md ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Rudra-ai/Llama-3.2-3B-Instruct-cot-19-11-1
3
+ library_name: transformers
4
+ model_name: Llama-3.2-3B-Instruct-cot-19-11-2
5
+ tags:
6
+ - generated_from_trainer
7
+ - trl
8
+ - dpo
9
+ - unsloth
10
+ licence: license
11
+ ---
12
+
13
+ # Model Card for Llama-3.2-3B-Instruct-cot-19-11-2
14
+
15
+ This model is a fine-tuned version of [Rudra-ai/Llama-3.2-3B-Instruct-cot-19-11-1](https://huggingface.co/Rudra-ai/Llama-3.2-3B-Instruct-cot-19-11-1).
16
+ It has been trained using [TRL](https://github.com/huggingface/trl).
17
+
18
+ ## Quick start
19
+
20
+ ```python
21
+ from transformers import pipeline
22
+
23
+ question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
24
+ generator = pipeline("text-generation", model="Rudra-ai/Llama-3.2-3B-Instruct-cot-19-11-2", device="cuda")
25
+ output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
26
+ print(output["generated_text"])
27
+ ```
28
+
29
+ ## Training procedure
30
+
31
+
32
+
33
+ This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290).
34
+
35
+ ### Framework versions
36
+
37
+ - TRL: 0.12.1
38
+ - Transformers: 4.46.1
39
+ - Pytorch: 2.4.1+cu124
40
+ - Datasets: 3.1.0
41
+ - Tokenizers: 0.20.3
42
+
43
+ ## Citations
44
+
45
+ Cite DPO as:
46
+
47
+ ```bibtex
48
+ @inproceedings{rafailov2023direct,
49
+ title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}},
50
+ author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn},
51
+ year = 2023,
52
+ booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023},
53
+ url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html},
54
+ editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine},
55
+ }
56
+ ```
57
+
58
+ Cite TRL as:
59
+
60
+ ```bibtex
61
+ @misc{vonwerra2022trl,
62
+ title = {{TRL: Transformer Reinforcement Learning}},
63
+ author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
64
+ year = 2020,
65
+ journal = {GitHub repository},
66
+ publisher = {GitHub},
67
+ howpublished = {\url{https://github.com/huggingface/trl}}
68
+ }
69
+ ```
all_results.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 1.0,
3
+ "total_flos": 0.0,
4
+ "train_loss": 2.0509657764434817,
5
+ "train_runtime": 2877.0971,
6
+ "train_samples": 2000,
7
+ "train_samples_per_second": 0.695,
8
+ "train_steps_per_second": 0.017
9
+ }
generation_config.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 128000,
3
+ "do_sample": true,
4
+ "max_length": 131072,
5
+ "temperature": 0.6,
6
+ "top_p": 0.9,
7
+ "transformers_version": "4.46.1"
8
+ }
train_results.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 1.0,
3
+ "total_flos": 0.0,
4
+ "train_loss": 2.0509657764434817,
5
+ "train_runtime": 2877.0971,
6
+ "train_samples": 2000,
7
+ "train_samples_per_second": 0.695,
8
+ "train_steps_per_second": 0.017
9
+ }
trainer_state.json ADDED
@@ -0,0 +1,132 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.0,
5
+ "eval_steps": 500,
6
+ "global_step": 50,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.02,
13
+ "grad_norm": 2673.435546875,
14
+ "learning_rate": 2.0000000000000003e-06,
15
+ "logits/chosen": 0.6171875,
16
+ "logits/rejected": 0.294921875,
17
+ "logps/chosen": -414.0,
18
+ "logps/rejected": -478.0,
19
+ "loss": 6.9141,
20
+ "rewards/accuracies": 0.0,
21
+ "rewards/chosen": 0.0,
22
+ "rewards/margins": 0.0,
23
+ "rewards/rejected": 0.0,
24
+ "step": 1
25
+ },
26
+ {
27
+ "epoch": 0.2,
28
+ "grad_norm": 368.8966369628906,
29
+ "learning_rate": 9.698463103929542e-06,
30
+ "logits/chosen": 0.58203125,
31
+ "logits/rejected": 0.41015625,
32
+ "logps/chosen": -370.0,
33
+ "logps/rejected": -496.0,
34
+ "loss": 3.4334,
35
+ "rewards/accuracies": 0.7666666507720947,
36
+ "rewards/chosen": -3.03125,
37
+ "rewards/margins": 6.5,
38
+ "rewards/rejected": -9.5625,
39
+ "step": 10
40
+ },
41
+ {
42
+ "epoch": 0.4,
43
+ "grad_norm": 122.28874969482422,
44
+ "learning_rate": 7.500000000000001e-06,
45
+ "logits/chosen": 0.8984375,
46
+ "logits/rejected": 0.75390625,
47
+ "logps/chosen": -560.0,
48
+ "logps/rejected": -832.0,
49
+ "loss": 2.7651,
50
+ "rewards/accuracies": 0.9700000286102295,
51
+ "rewards/chosen": -20.25,
52
+ "rewards/margins": 23.25,
53
+ "rewards/rejected": -43.5,
54
+ "step": 20
55
+ },
56
+ {
57
+ "epoch": 0.6,
58
+ "grad_norm": 270.5760498046875,
59
+ "learning_rate": 4.131759111665349e-06,
60
+ "logits/chosen": 1.1015625,
61
+ "logits/rejected": 0.93359375,
62
+ "logps/chosen": -560.0,
63
+ "logps/rejected": -808.0,
64
+ "loss": 1.6426,
65
+ "rewards/accuracies": 1.0,
66
+ "rewards/chosen": -19.75,
67
+ "rewards/margins": 21.25,
68
+ "rewards/rejected": -41.0,
69
+ "step": 30
70
+ },
71
+ {
72
+ "epoch": 0.8,
73
+ "grad_norm": 198.14657592773438,
74
+ "learning_rate": 1.1697777844051105e-06,
75
+ "logits/chosen": 1.109375,
76
+ "logits/rejected": 0.91015625,
77
+ "logps/chosen": -500.0,
78
+ "logps/rejected": -780.0,
79
+ "loss": 0.3845,
80
+ "rewards/accuracies": 0.9800000190734863,
81
+ "rewards/chosen": -16.625,
82
+ "rewards/margins": 20.875,
83
+ "rewards/rejected": -37.5,
84
+ "step": 40
85
+ },
86
+ {
87
+ "epoch": 1.0,
88
+ "grad_norm": 122.92610931396484,
89
+ "learning_rate": 0.0,
90
+ "logits/chosen": 1.0625,
91
+ "logits/rejected": 0.75,
92
+ "logps/chosen": -520.0,
93
+ "logps/rejected": -836.0,
94
+ "loss": 1.6812,
95
+ "rewards/accuracies": 0.9800000190734863,
96
+ "rewards/chosen": -17.125,
97
+ "rewards/margins": 24.5,
98
+ "rewards/rejected": -41.75,
99
+ "step": 50
100
+ },
101
+ {
102
+ "epoch": 1.0,
103
+ "step": 50,
104
+ "total_flos": 0.0,
105
+ "train_loss": 2.0509657764434817,
106
+ "train_runtime": 2877.0971,
107
+ "train_samples_per_second": 0.695,
108
+ "train_steps_per_second": 0.017
109
+ }
110
+ ],
111
+ "logging_steps": 10,
112
+ "max_steps": 50,
113
+ "num_input_tokens_seen": 0,
114
+ "num_train_epochs": 1,
115
+ "save_steps": 100,
116
+ "stateful_callbacks": {
117
+ "TrainerControl": {
118
+ "args": {
119
+ "should_epoch_stop": false,
120
+ "should_evaluate": false,
121
+ "should_log": false,
122
+ "should_save": true,
123
+ "should_training_stop": true
124
+ },
125
+ "attributes": {}
126
+ }
127
+ },
128
+ "total_flos": 0.0,
129
+ "train_batch_size": 1,
130
+ "trial_name": null,
131
+ "trial_params": null
132
+ }