import torch import requests from PIL import Image import numpy as np from torchvision.utils import make_grid, save_image from diffusers import DiffusionPipeline # only tested on diffusers[torch]==0.19.3, may have conflicts with newer versions of diffusers
def load_wonder3d_pipeline():
pipeline = DiffusionPipeline.from_pretrained(
'flamehaze1115/wonder3d-v1.0', # or use local checkpoint './ckpts'
custom_pipeline='flamehaze1115/wonder3d-pipeline',
torch_dtype=torch.float16
)
# enable xformers
pipeline.unet.enable_xformers_memory_efficient_attention()
if torch.cuda.is_available():
pipeline.to('cuda:0')
return pipeline
pipeline = load_wonder3d_pipeline()
Download an example image.
cond = Image.open(requests.get("https://d.skis.ltd/nrp/sample-data/lysol.png", stream=True).raw)
The object should be located in the center and resized to 80% of image height.
cond = Image.fromarray(np.array(cond)[:, :, :3])
Run the pipeline!
images = pipeline(cond, num_inference_steps=20, output_type='pt', guidance_scale=1.0).images
result = make_grid(images, nrow=6, ncol=2, padding=0, value_range=(0, 1))
save_image(result, 'result.png')