RomainDarous's picture
Add new SentenceTransformer model
28d1e0d verified
metadata
language:
  - bn
  - cs
  - de
  - en
  - et
  - fi
  - fr
  - gu
  - ha
  - hi
  - is
  - ja
  - kk
  - km
  - lt
  - lv
  - pl
  - ps
  - ru
  - ta
  - tr
  - uk
  - xh
  - zh
  - zu
  - ne
  - ro
  - si
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:1327190
  - loss:CoSENTLoss
base_model: sentence-transformers/distiluse-base-multilingual-cased-v2
widget:
  - source_sentence: यहाँका केही धार्मिक सम्पदाहरू यस प्रकार रहेका छन्।
    sentences:
      - >-
        A party works journalists from advertisements about a massive Himalayan
        post.
      - Some religious affiliations here remain.
      - >-
        In Spain, the strict opposition of Roman Catholic churches is found to
        have assumed a marriage similar to male beach wives.
  - source_sentence: >-
      AP White House reporter Jill Colvin greeted McEnany at her first briefing
      by asking, "Will you pledge never to lie to us from that podium?"
    sentences:
      - >-
        There is a need for the people of Kano State, especially those who are
        employed, to give the unemployed access to the program to address the
        problems of the unemployed youth in the country.
      - 美联社白宫记者吉尔·科尔文(Jill Colvin)在麦克纳尼的第一次简报会上向她打招呼,问道:“你能保证永远不会在讲台上对我们撒谎吗?”
      - >-
        The violence underscores the precarious security situation in
        Afghanistan as U.S. President Donald Trump weighs increasing the number
        of U.S. troops supporting the military and police in the country.
  - source_sentence: >-
      He possesses a pistol with silver bullets for protection from vampires and
      werewolves.
    sentences:
      - >-
        Er besitzt eine Pistole mit silbernen Kugeln zum Schutz vor Vampiren und
        Werwölfen.
      - Bibimbap umfasst Reis, Spinat, Rettich, Bohnensprossen.
      - >-
        BSAC profitierte auch von den großen, aber nicht unbeschränkten
        persönlichen Vermögen von Rhodos und Beit vor ihrem Tod.
  - source_sentence: >-
      To the west of the Badger Head Inlier is the Port Sorell Formation, a
      tectonic mélange of marine sediments and dolerite.
    sentences:
      - >-
        Er brennt einen Speer und brennt Flammen aus seinem Mund, wenn er wütend
        ist.
      - >-
        Westlich des Badger Head Inlier befindet sich die Port Sorell Formation,
        eine tektonische Mischung aus Sedimenten und Dolerit.
      - Public Lynching and Mob Violence under Modi Government
  - source_sentence: >-
      Garnizoana otomană se retrage în sudul Dunării, iar după 164 de ani
      cetatea intră din nou sub stăpânirea europenilor.
    sentences:
      - >-
        This is because, once again, we have taken into account the fact that we
        have adopted a large number of legislative proposals.
      - Helsinki University ranks 75th among universities for 2010.
      - >-
        Ottoman garnisoana is withdrawing into the south of the Danube and,
        after 164 years, it is once again under the control of Europeans.
datasets:
  - RicardoRei/wmt-da-human-evaluation
  - wmt/wmt20_mlqe_task1
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
  - pearson_cosine
  - spearman_cosine
model-index:
  - name: >-
      SentenceTransformer based on
      sentence-transformers/distiluse-base-multilingual-cased-v2
    results:
      - task:
          type: semantic-similarity
          name: Semantic Similarity
        dataset:
          name: sts eval
          type: sts-eval
        metrics:
          - type: pearson_cosine
            value: 0.3206973346263331
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.30186185706678065
            name: Spearman Cosine
          - type: pearson_cosine
            value: 0.16415599381152823
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.2100212895924085
            name: Spearman Cosine
          - type: pearson_cosine
            value: 0.2835638593581582
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.28768623299130575
            name: Spearman Cosine
          - type: pearson_cosine
            value: 0.5058926579356612
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.4940621216662592
            name: Spearman Cosine
          - type: pearson_cosine
            value: 0.37071342497736826
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.3890195172034537
            name: Spearman Cosine
          - type: pearson_cosine
            value: 0.6655183783252212
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.6069408353469313
            name: Spearman Cosine
          - type: pearson_cosine
            value: 0.2833344156983574
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.2814491820129572
            name: Spearman Cosine
      - task:
          type: semantic-similarity
          name: Semantic Similarity
        dataset:
          name: sts test
          type: sts-test
        metrics:
          - type: pearson_cosine
            value: 0.31527674589721005
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.29671444308890826
            name: Spearman Cosine
          - type: pearson_cosine
            value: 0.1309209199952754
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.09868784578188826
            name: Spearman Cosine
          - type: pearson_cosine
            value: 0.22966057387948113
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.24221319169582142
            name: Spearman Cosine
          - type: pearson_cosine
            value: 0.49607072945477154
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.4952015667722211
            name: Spearman Cosine
          - type: pearson_cosine
            value: 0.3697043788503178
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.37691503947177424
            name: Spearman Cosine
          - type: pearson_cosine
            value: 0.7060091540128164
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.6354850557046146
            name: Spearman Cosine
          - type: pearson_cosine
            value: 0.34560690557182
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.3130941622579434
            name: Spearman Cosine

SentenceTransformer based on sentence-transformers/distiluse-base-multilingual-cased-v2

This is a sentence-transformers model finetuned from sentence-transformers/distiluse-base-multilingual-cased-v2 on the wmt_da, mlqe_en_de, mlqe_en_zh, mlqe_et_en, mlqe_ne_en, mlqe_ro_en and mlqe_si_en datasets. It maps sentences & paragraphs to a 512-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: DistilBertModel 
  (1): MultiHeadGeneralizedPooling(
    (P): ModuleList(
      (0-7): 8 x Linear(in_features=768, out_features=96, bias=True)
    )
    (W1): ModuleList(
      (0-7): 8 x Linear(in_features=96, out_features=384, bias=True)
    )
    (W2): ModuleList(
      (0-7): 8 x Linear(in_features=384, out_features=96, bias=True)
    )
  )
  (2): Dense({'in_features': 768, 'out_features': 512, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("RomainDarous/generalized")
# Run inference
sentences = [
    'Garnizoana otomană se retrage în sudul Dunării, iar după 164 de ani cetatea intră din nou sub stăpânirea europenilor.',
    'Ottoman garnisoana is withdrawing into the south of the Danube and, after 164 years, it is once again under the control of Europeans.',
    'This is because, once again, we have taken into account the fact that we have adopted a large number of legislative proposals.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 512]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Semantic Similarity

Metric sts-eval sts-test
pearson_cosine 0.3207 0.3456
spearman_cosine 0.3019 0.3131

Semantic Similarity

Metric Value
pearson_cosine 0.1642
spearman_cosine 0.21

Semantic Similarity

Metric Value
pearson_cosine 0.2836
spearman_cosine 0.2877

Semantic Similarity

Metric Value
pearson_cosine 0.5059
spearman_cosine 0.4941

Semantic Similarity

Metric Value
pearson_cosine 0.3707
spearman_cosine 0.389

Semantic Similarity

Metric Value
pearson_cosine 0.6655
spearman_cosine 0.6069

Semantic Similarity

Metric Value
pearson_cosine 0.2833
spearman_cosine 0.2814

Training Details

Training Datasets

wmt_da

  • Dataset: wmt_da at 301de38
  • Size: 1,285,190 training samples
  • Columns: sentence1, sentence2, and score
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2 score
    type string string float
    details
    • min: 4 tokens
    • mean: 37.0 tokens
    • max: 128 tokens
    • min: 4 tokens
    • mean: 36.84 tokens
    • max: 128 tokens
    • min: 0.0
    • mean: 0.72
    • max: 1.0
  • Samples:
    sentence1 sentence2 score
    在指挥员下达升旗指令后,升旗手奋力挥臂划出一道弧线,鲜艳的五星红旗如同“雄鹰展翅”一般舒展开旗面,伴随国歌激昂雄壮的旋律缓缓升起。 After the commander gave orders to raise the flag, the flag-bearer swung his arm to draw an arc, and the bright five-star red flag spread out like an eagle's wing, slowly rising with the national anthem's strong melody. 0.94
    The report also said the monitoring team had received information that two senior Islamic State commanders, Abu Qutaibah and Abu Hajar al-Iraqi, had recently arrived in Afghanistan from the Middle East. 另外,报告还表示,监管小组目前已经得到消息称伊斯兰国两名高级指挥官阿布•库泰巴(Abu Qutaibah)和阿布•哈吉尔•伊拉克(Abu Qutaibah and Abu Hajar al-Iraqi)近期已从中东抵达阿富汗。 0.82
    Aus der Schusswunde floss dann Blut. From the gunshot wound then flowed blood. 0.73
  • Loss: CoSENTLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "pairwise_cos_sim"
    }
    

mlqe_en_de

  • Dataset: mlqe_en_de at 0783ed2
  • Size: 7,000 training samples
  • Columns: sentence1, sentence2, and score
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2 score
    type string string float
    details
    • min: 11 tokens
    • mean: 23.78 tokens
    • max: 44 tokens
    • min: 11 tokens
    • mean: 26.51 tokens
    • max: 54 tokens
    • min: 0.06
    • mean: 0.86
    • max: 1.0
  • Samples:
    sentence1 sentence2 score
    Early Muslim traders and merchants visited Bengal while traversing the Silk Road in the first millennium. Frühe muslimische Händler und Kaufleute besuchten Bengalen, während sie im ersten Jahrtausend die Seidenstraße durchquerten. 0.9233333468437195
    While Fran dissipated shortly after that, the tropical wave progressed into the northeastern Pacific Ocean. Während Fran kurz danach zerstreute, entwickelte sich die tropische Welle in den nordöstlichen Pazifischen Ozean. 0.8899999856948853
    Distressed securities include such events as restructurings, recapitalizations, and bankruptcies. Zu den belasteten Wertpapieren gehören Restrukturierungen, Rekapitalisierungen und Insolvenzen. 0.9300000071525574
  • Loss: CoSENTLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "pairwise_cos_sim"
    }
    

mlqe_en_zh

  • Dataset: mlqe_en_zh at 0783ed2
  • Size: 7,000 training samples
  • Columns: sentence1, sentence2, and score
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2 score
    type string string float
    details
    • min: 9 tokens
    • mean: 24.09 tokens
    • max: 47 tokens
    • min: 12 tokens
    • mean: 29.93 tokens
    • max: 74 tokens
    • min: 0.01
    • mean: 0.68
    • max: 0.98
  • Samples:
    sentence1 sentence2 score
    In the late 1980s, the hotel's reputation declined, and it functioned partly as a "backpackers hangout." 在 20 世纪 80 年代末 , 这家旅馆的声誉下降了 , 部分地起到了 "背包吊销" 的作用。 0.40666666626930237
    From 1870 to 1915, 36 million Europeans migrated away from Europe. 从 1870 年到 1915 年 , 3, 600 万欧洲人从欧洲移民。 0.8333333730697632
    In some photos, the footpads did press into the regolith, especially when they moved sideways at touchdown. 在一些照片中 , 脚垫确实挤进了后台 , 尤其是当他们在触地时侧面移动时。 0.33000001311302185
  • Loss: CoSENTLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "pairwise_cos_sim"
    }
    

mlqe_et_en

  • Dataset: mlqe_et_en at 0783ed2
  • Size: 7,000 training samples
  • Columns: sentence1, sentence2, and score
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2 score
    type string string float
    details
    • min: 14 tokens
    • mean: 31.88 tokens
    • max: 63 tokens
    • min: 11 tokens
    • mean: 24.57 tokens
    • max: 56 tokens
    • min: 0.03
    • mean: 0.67
    • max: 1.0
  • Samples:
    sentence1 sentence2 score
    Gruusias vahistati president Mihhail Saakašvili pressibüroo nõunik Simon Kiladze, keda süüdistati spioneerimises. In Georgia, an adviser to the press office of President Mikhail Saakashvili, Simon Kiladze, was arrested and accused of spying. 0.9466666579246521
    Nii teadmissotsioloogia pooldajad tavaliselt Kuhni tõlgendavadki, arendades tema vaated sõnaselgeks relativismiks. This is how supporters of knowledge sociology usually interpret Kuhn by developing his views into an explicit relativism. 0.9366666674613953
    18. jaanuaril 2003 haarasid mitmeid Canberra eeslinnu võsapõlengud, milles hukkus neli ja sai vigastada 435 inimest. On 18 January 2003, several of the suburbs of Canberra were seized by debt fires which killed four people and injured 435 people. 0.8666666150093079
  • Loss: CoSENTLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "pairwise_cos_sim"
    }
    

mlqe_ne_en

  • Dataset: mlqe_ne_en at 0783ed2
  • Size: 7,000 training samples
  • Columns: sentence1, sentence2, and score
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2 score
    type string string float
    details
    • min: 17 tokens
    • mean: 40.67 tokens
    • max: 77 tokens
    • min: 9 tokens
    • mean: 24.66 tokens
    • max: 128 tokens
    • min: 0.01
    • mean: 0.39
    • max: 1.0
  • Samples:
    sentence1 sentence2 score
    सामान्‍य बजट प्रायः फेब्रुअरीका अंतिम कार्य दिवसमा लाईन्छ। A normal budget is usually awarded to the digital working day of February. 0.5600000023841858
    कविताका यस्ता स्वरूपमा दुई, तिन वा चार पाउसम्मका मुक्तक, हाइकु, सायरी र लोकसूक्तिहरू पर्दछन् । The book consists of two, free of her or four paulets, haiku, Sairi, and locus in such forms. 0.23666666448116302
    ब्रिट्नीले यस बारेमा प्रतिक्रिया ब्यक्ता गरदै भनिन,"कुन ठूलो कुरा हो र? Britney did not respond to this, saying "which is a big thing and a big thing? 0.21666665375232697
  • Loss: CoSENTLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "pairwise_cos_sim"
    }
    

mlqe_ro_en

  • Dataset: mlqe_ro_en at 0783ed2
  • Size: 7,000 training samples
  • Columns: sentence1, sentence2, and score
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2 score
    type string string float
    details
    • min: 12 tokens
    • mean: 29.44 tokens
    • max: 60 tokens
    • min: 10 tokens
    • mean: 22.38 tokens
    • max: 65 tokens
    • min: 0.01
    • mean: 0.68
    • max: 1.0
  • Samples:
    sentence1 sentence2 score
    Orașul va fi împărțit în patru districte, iar suburbiile în 10 mahalale. The city will be divided into four districts and suburbs into 10 mahalals. 0.4699999988079071
    La scurt timp după aceasta, au devenit cunoscute debarcările germane de la Trondheim, Bergen și Stavanger, precum și luptele din Oslofjord. In the light of the above, the Authority concludes that the aid granted to ADIF is compatible with the internal market pursuant to Article 61 (3) (c) of the EEA Agreement. 0.02666666731238365
    Până în vara 1791, în Clubul iacobinilor au dominat reprezentanții monarhismului liberal constituțional. Until the summer of 1791, representatives of liberal constitutional monarchism dominated in the Jacobins Club. 0.8733333349227905
  • Loss: CoSENTLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "pairwise_cos_sim"
    }
    

mlqe_si_en

  • Dataset: mlqe_si_en at 0783ed2
  • Size: 7,000 training samples
  • Columns: sentence1, sentence2, and score
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2 score
    type string string float
    details
    • min: 8 tokens
    • mean: 18.19 tokens
    • max: 38 tokens
    • min: 9 tokens
    • mean: 22.31 tokens
    • max: 128 tokens
    • min: 0.01
    • mean: 0.51
    • max: 1.0
  • Samples:
    sentence1 sentence2 score
    ඇපලෝ 4 සැටර්න් V බූස්ටරයේ ප්‍රථම පර්යේෂණ පියාසැරිය විය. The first research flight of the Apollo 4 Saturn V Booster. 0.7966666221618652
    මෙහි අවපාතය සැලකීමේ දී, මෙහි 48%ක අවරෝහණය $ මිලියන 125කට අධික චිත්‍රපටයක් ලද තෙවන කුඩාම අවපාතය වේ. In conjunction with the depression here, 48 % of obesity here is the third smallest depression in over $ 125 million film. 0.17666666209697723
    එසේම "බකමූණන් මගින් මෙම රාක්ෂසියගේ රාත්‍රී හැසිරීම සංකේතවත් වන බව" පවසයි. Also "the owl says that this monster's night behavior is symbolic". 0.8799999952316284
  • Loss: CoSENTLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "pairwise_cos_sim"
    }
    

Evaluation Datasets

wmt_da

  • Dataset: wmt_da at 301de38
  • Size: 1,285,190 evaluation samples
  • Columns: sentence1, sentence2, and score
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2 score
    type string string float
    details
    • min: 4 tokens
    • mean: 38.0 tokens
    • max: 128 tokens
    • min: 4 tokens
    • mean: 38.13 tokens
    • max: 128 tokens
    • min: 0.0
    • mean: 0.71
    • max: 1.0
  • Samples:
    sentence1 sentence2 score
    Langmajer v krvi kvůli sázce o pivo? Langmajer in blood due to a beer bet? 0.51
    Detective Inspector Brian O'Hagan said: 'The investigation is in the early stages but I would appeal to anyone who was in the vicinity of John Street in Birkenhead who saw or heard anything suspicious to contact us. 侦探督察布赖恩奥赫干说:"调查是在早期阶段,但我会呼吁任何人谁是在约翰街附近的伯肯黑德谁看到或听到任何可疑的联系我们。 0.65
    また、政府として補償措置や人権啓発などの活動に取り組むとしていた。 The government also said it would take activities such as compensation measures and human rights awareness. 0.89
  • Loss: CoSENTLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "pairwise_cos_sim"
    }
    

mlqe_en_de

  • Dataset: mlqe_en_de at 0783ed2
  • Size: 1,000 evaluation samples
  • Columns: sentence1, sentence2, and score
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2 score
    type string string float
    details
    • min: 11 tokens
    • mean: 24.11 tokens
    • max: 49 tokens
    • min: 11 tokens
    • mean: 26.66 tokens
    • max: 55 tokens
    • min: 0.03
    • mean: 0.81
    • max: 1.0
  • Samples:
    sentence1 sentence2 score
    Resuming her patrols, Constitution managed to recapture the American sloop Neutrality on 27 March and, a few days later, the French ship Carteret. Mit der Wiederaufnahme ihrer Patrouillen gelang es der Verfassung, am 27. März die amerikanische Schleuderneutralität und wenige Tage später das französische Schiff Carteret zurückzuerobern. 0.9033333659172058
    Blaine's nomination alienated many Republicans who viewed Blaine as ambitious and immoral. Blaines Nominierung entfremdete viele Republikaner, die Blaine als ehrgeizig und unmoralisch betrachteten. 0.9216666221618652
    This initiated a brief correspondence between the two which quickly descended into political rancor. Dies leitete eine kurze Korrespondenz zwischen den beiden ein, die schnell zu politischem Groll abstieg. 0.878333330154419
  • Loss: CoSENTLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "pairwise_cos_sim"
    }
    

mlqe_en_zh

  • Dataset: mlqe_en_zh at 0783ed2
  • Size: 1,000 evaluation samples
  • Columns: sentence1, sentence2, and score
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2 score
    type string string float
    details
    • min: 9 tokens
    • mean: 23.75 tokens
    • max: 49 tokens
    • min: 11 tokens
    • mean: 29.56 tokens
    • max: 67 tokens
    • min: 0.26
    • mean: 0.65
    • max: 0.9
  • Samples:
    sentence1 sentence2 score
    Freeman briefly stayed with the king before returning to Accra via Whydah, Ahgwey and Little Popo. 弗里曼在经过惠达、阿格威和小波波回到阿克拉之前与国王一起住了一会儿。 0.6683333516120911
    Fantastic Fiction "Scratches in the Sky, Ben Peek, Agog! 奇特的虚构 "天空中的碎片 , 本佩克 , 阿戈 ! 0.71833336353302
    For Hermann Keller, the running quavers and semiquavers "suffuse the setting with health and strength." 对赫尔曼 · 凯勒来说 , 跑步的跳跃者和半跳跃者 "让环境充满健康和力量" 。 0.7066666483879089
  • Loss: CoSENTLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "pairwise_cos_sim"
    }
    

mlqe_et_en

  • Dataset: mlqe_et_en at 0783ed2
  • Size: 1,000 evaluation samples
  • Columns: sentence1, sentence2, and score
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2 score
    type string string float
    details
    • min: 12 tokens
    • mean: 32.4 tokens
    • max: 58 tokens
    • min: 10 tokens
    • mean: 24.87 tokens
    • max: 47 tokens
    • min: 0.03
    • mean: 0.6
    • max: 0.99
  • Samples:
    sentence1 sentence2 score
    Jackson pidas seal kõne, öeldes, et James Brown on tema suurim inspiratsioon. Jackson gave a speech there saying that James Brown is his greatest inspiration. 0.9833333492279053
    Kaanelugu rääkis loo kolme ungarlase üleelamistest Ungari revolutsiooni päevil. The life of the Man spoke of a story of three Hungarians living in the days of the Hungarian Revolution. 0.28999999165534973
    Teise maailmasõja ajal oli ta mitme Saksa juhatusele alluvate eesti väeosa ülem. During World War II, he was the commander of several of the German leadership. 0.4516666829586029
  • Loss: CoSENTLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "pairwise_cos_sim"
    }
    

mlqe_ne_en

  • Dataset: mlqe_ne_en at 0783ed2
  • Size: 1,000 evaluation samples
  • Columns: sentence1, sentence2, and score
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2 score
    type string string float
    details
    • min: 17 tokens
    • mean: 41.03 tokens
    • max: 85 tokens
    • min: 10 tokens
    • mean: 24.77 tokens
    • max: 128 tokens
    • min: 0.05
    • mean: 0.36
    • max: 0.92
  • Samples:
    sentence1 sentence2 score
    १८९२ तिर भवानीदत्त पाण्डेले 'मुद्रा राक्षस'को अनुवाद गरे। Around 1892, Bhavani Pandit translated the 'money monster'. 0.8416666388511658
    यस बच्चाको मुखले आमाको स्तन यस बच्चाको मुखले आमाको स्तन राम्ररी च्यापेको छ । The breasts of this child's mouth are taped well with the mother's mouth. 0.2150000035762787
    बुवाको बन्दुक चोरेर हिँडेका बराललाई केआई सिंहले अब गोली ल्याउन लगाए ।... Kei Singh, who stole the boy's closet, took the bullet to bring it now.. 0.27000001072883606
  • Loss: CoSENTLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "pairwise_cos_sim"
    }
    

mlqe_ro_en

  • Dataset: mlqe_ro_en at 0783ed2
  • Size: 1,000 evaluation samples
  • Columns: sentence1, sentence2, and score
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2 score
    type string string float
    details
    • min: 14 tokens
    • mean: 30.25 tokens
    • max: 59 tokens
    • min: 6 tokens
    • mean: 22.7 tokens
    • max: 55 tokens
    • min: 0.01
    • mean: 0.68
    • max: 1.0
  • Samples:
    sentence1 sentence2 score
    Cornwallis se afla înconjurat pe uscat de forțe armate net superioare și retragerea pe mare era îndoielnică din cauza flotei franceze. Cornwallis was surrounded by shore by higher armed forces and the sea withdrawal was doubtful due to the French fleet. 0.8199999928474426
    thumbrightuprightDansatori [[cretani de muzică tradițională. Number of employees employed in the production of the like product in the Union. 0.009999999776482582
    Potrivit documentelor vremii și tradiției orale, aceasta a fost cea mai grea perioadă din istoria orașului. According to the documents of the oral weather and tradition, this was the hardest period in the city's history. 0.5383332967758179
  • Loss: CoSENTLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "pairwise_cos_sim"
    }
    

mlqe_si_en

  • Dataset: mlqe_si_en at 0783ed2
  • Size: 1,000 evaluation samples
  • Columns: sentence1, sentence2, and score
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2 score
    type string string float
    details
    • min: 8 tokens
    • mean: 18.12 tokens
    • max: 36 tokens
    • min: 7 tokens
    • mean: 22.18 tokens
    • max: 128 tokens
    • min: 0.03
    • mean: 0.51
    • max: 0.99
  • Samples:
    sentence1 sentence2 score
    එයට ශි්‍ර ලංකාවේ සාමය ඇති කිරිමටත් නැති කිරිමටත් පුළුවන්. It can also cause peace in Sri Lanka. 0.3199999928474426
    ඔහු මනෝ විද්‍යාව, සමාජ විද්‍යාව, ඉතිහාසය හා සන්නිවේදනය යන විෂය ක්ෂේත්‍රයන් පිලිබදවද අධ්‍යයනයන් සිදු කිරීමට උත්සාහ කරන ලදි. He attempted to do subjects in psychology, sociology, history and communication. 0.5366666913032532
    එහෙත් කිසිදු මිනිසෙක්‌ හෝ ගැහැනියෙක්‌ එලිමහනක නොවූහ. But no man or woman was eliminated. 0.2783333361148834
  • Loss: CoSENTLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "pairwise_cos_sim"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 64
  • per_device_eval_batch_size: 64
  • num_train_epochs: 2
  • warmup_ratio: 0.1

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 64
  • per_device_eval_batch_size: 64
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 2
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss wmt da loss mlqe en de loss mlqe en zh loss mlqe et en loss mlqe ne en loss mlqe ro en loss mlqe si en loss sts-eval_spearman_cosine sts-test_spearman_cosine
0.4 6690 9.3414 7.5667 7.5538 7.5468 7.4966 7.5247 7.4379 7.5499 0.2263 -
0.8 13380 7.5636 7.5622 7.5517 7.5412 7.4917 7.5199 7.4313 7.5437 0.2703 -
1.2 20070 7.5579 7.5599 7.5515 7.5430 7.4876 7.5155 7.4235 7.5431 0.2693 -
1.6 26760 7.5556 7.5591 7.5501 7.5401 7.4876 7.5156 7.4202 7.5422 0.2707 -
2.0 33450 7.5527 7.5585 7.5498 7.5409 7.4837 7.5148 7.4185 7.5410 0.2814 0.3131

Framework Versions

  • Python: 3.12.3
  • Sentence Transformers: 3.3.1
  • Transformers: 4.46.3
  • PyTorch: 2.5.1+cu124
  • Accelerate: 1.1.1
  • Datasets: 3.1.0
  • Tokenizers: 0.20.3

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

CoSENTLoss

@online{kexuefm-8847,
    title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
    author={Su Jianlin},
    year={2022},
    month={Jan},
    url={https://kexue.fm/archives/8847},
}