|
--- |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: '' |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# |
|
|
|
This model was trained from scratch on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2965 |
|
- Wer: 0.3144 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 8 |
|
- total_train_batch_size: 64 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 1000 |
|
- num_epochs: 20.0 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:-----:|:-----:|:---------------:|:------:| |
|
| 2.888 | 0.51 | 400 | 3.7320 | 0.9440 | |
|
| 3.1636 | 1.02 | 800 | 2.9188 | 1.1916 | |
|
| 2.773 | 1.53 | 1200 | 2.3347 | 1.0134 | |
|
| 0.7198 | 2.04 | 1600 | 0.6678 | 0.4826 | |
|
| 0.5255 | 2.55 | 2000 | 0.4605 | 0.4135 | |
|
| 0.3961 | 3.06 | 2400 | 0.4266 | 0.3955 | |
|
| 0.3424 | 3.57 | 2800 | 0.3786 | 0.3741 | |
|
| 0.3858 | 4.08 | 3200 | 0.3161 | 0.3552 | |
|
| 0.3218 | 4.59 | 3600 | 0.3029 | 0.3510 | |
|
| 0.199 | 5.1 | 4000 | 0.2988 | 0.3418 | |
|
| 0.2054 | 5.61 | 4400 | 0.2873 | 0.3434 | |
|
| 0.1704 | 6.12 | 4800 | 0.3129 | 0.3432 | |
|
| 0.1805 | 6.63 | 5200 | 0.2963 | 0.3413 | |
|
| 0.2091 | 7.14 | 5600 | 0.2755 | 0.3329 | |
|
| 0.1971 | 7.65 | 6000 | 0.2706 | 0.3309 | |
|
| 0.1237 | 8.16 | 6400 | 0.2823 | 0.3270 | |
|
| 0.123 | 8.67 | 6800 | 0.2754 | 0.3246 | |
|
| 0.103 | 9.18 | 7200 | 0.2917 | 0.3272 | |
|
| 0.1143 | 9.69 | 7600 | 0.2885 | 0.3305 | |
|
| 0.156 | 10.2 | 8000 | 0.2810 | 0.3288 | |
|
| 0.167 | 10.71 | 8400 | 0.2689 | 0.3232 | |
|
| 0.0815 | 11.22 | 8800 | 0.2899 | 0.3236 | |
|
| 0.0844 | 11.73 | 9200 | 0.2798 | 0.3225 | |
|
| 0.0775 | 12.24 | 9600 | 0.2894 | 0.3224 | |
|
| 0.0677 | 12.75 | 10000 | 0.2838 | 0.3204 | |
|
| 0.1383 | 13.27 | 10400 | 0.2959 | 0.3211 | |
|
| 0.1233 | 13.77 | 10800 | 0.2922 | 0.3213 | |
|
| 0.0688 | 14.29 | 11200 | 0.2903 | 0.3209 | |
|
| 0.0655 | 14.8 | 11600 | 0.2868 | 0.3182 | |
|
| 0.0449 | 15.31 | 12000 | 0.2959 | 0.3172 | |
|
| 0.0421 | 15.82 | 12400 | 0.2966 | 0.3180 | |
|
| 0.0858 | 16.33 | 12800 | 0.2941 | 0.3164 | |
|
| 0.0859 | 16.84 | 13200 | 0.2980 | 0.3165 | |
|
| 0.0561 | 17.35 | 13600 | 0.2965 | 0.3165 | |
|
| 0.0506 | 17.86 | 14000 | 0.2935 | 0.3148 | |
|
| 0.0312 | 18.37 | 14400 | 0.2964 | 0.3154 | |
|
| 0.0403 | 18.88 | 14800 | 0.2967 | 0.3160 | |
|
| 0.0924 | 19.39 | 15200 | 0.2955 | 0.3147 | |
|
| 0.0585 | 19.9 | 15600 | 0.2965 | 0.3144 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.17.0.dev0 |
|
- Pytorch 1.10.0+cu113 |
|
- Datasets 1.18.1 |
|
- Tokenizers 0.11.0 |
|
|