Rodrigo1771's picture
Training in progress, epoch 1
f6b0742 verified
raw
history blame
54.6 kB
2024-09-05 13:34:48.258223: I tensorflow/core/util/port.cc:153] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
2024-09-05 13:34:48.275126: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:485] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered
2024-09-05 13:34:48.295825: E external/local_xla/xla/stream_executor/cuda/cuda_dnn.cc:8454] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered
2024-09-05 13:34:48.302058: E external/local_xla/xla/stream_executor/cuda/cuda_blas.cc:1452] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered
2024-09-05 13:34:48.316617: I tensorflow/core/platform/cpu_feature_guard.cc:210] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.
To enable the following instructions: AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.
2024-09-05 13:34:49.554072: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT
/usr/local/lib/python3.10/dist-packages/transformers/training_args.py:1525: FutureWarning: `evaluation_strategy` is deprecated and will be removed in version 4.46 of πŸ€— Transformers. Use `eval_strategy` instead
warnings.warn(
09/05/2024 13:34:51 - WARNING - __main__ - Process rank: 0, device: cuda:0, n_gpu: 1distributed training: True, 16-bits training: False
09/05/2024 13:34:51 - INFO - __main__ - Training/evaluation parameters TrainingArguments(
_n_gpu=1,
accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False},
adafactor=False,
adam_beta1=0.9,
adam_beta2=0.999,
adam_epsilon=1e-08,
auto_find_batch_size=False,
batch_eval_metrics=False,
bf16=False,
bf16_full_eval=False,
data_seed=None,
dataloader_drop_last=False,
dataloader_num_workers=0,
dataloader_persistent_workers=False,
dataloader_pin_memory=True,
dataloader_prefetch_factor=None,
ddp_backend=None,
ddp_broadcast_buffers=None,
ddp_bucket_cap_mb=None,
ddp_find_unused_parameters=None,
ddp_timeout=1800,
debug=[],
deepspeed=None,
disable_tqdm=False,
dispatch_batches=None,
do_eval=True,
do_predict=True,
do_train=True,
eval_accumulation_steps=None,
eval_delay=0,
eval_do_concat_batches=True,
eval_on_start=False,
eval_steps=None,
eval_strategy=epoch,
eval_use_gather_object=False,
evaluation_strategy=epoch,
fp16=False,
fp16_backend=auto,
fp16_full_eval=False,
fp16_opt_level=O1,
fsdp=[],
fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False},
fsdp_min_num_params=0,
fsdp_transformer_layer_cls_to_wrap=None,
full_determinism=False,
gradient_accumulation_steps=2,
gradient_checkpointing=False,
gradient_checkpointing_kwargs=None,
greater_is_better=True,
group_by_length=False,
half_precision_backend=auto,
hub_always_push=False,
hub_model_id=None,
hub_private_repo=False,
hub_strategy=every_save,
hub_token=<HUB_TOKEN>,
ignore_data_skip=False,
include_inputs_for_metrics=False,
include_num_input_tokens_seen=False,
include_tokens_per_second=False,
jit_mode_eval=False,
label_names=None,
label_smoothing_factor=0.0,
learning_rate=5e-05,
length_column_name=length,
load_best_model_at_end=True,
local_rank=0,
log_level=passive,
log_level_replica=warning,
log_on_each_node=True,
logging_dir=/content/dissertation/scripts/ner/output/tb,
logging_first_step=False,
logging_nan_inf_filter=True,
logging_steps=500,
logging_strategy=steps,
lr_scheduler_kwargs={},
lr_scheduler_type=linear,
max_grad_norm=1.0,
max_steps=-1,
metric_for_best_model=f1,
mp_parameters=,
neftune_noise_alpha=None,
no_cuda=False,
num_train_epochs=10.0,
optim=adamw_torch,
optim_args=None,
optim_target_modules=None,
output_dir=/content/dissertation/scripts/ner/output,
overwrite_output_dir=True,
past_index=-1,
per_device_eval_batch_size=8,
per_device_train_batch_size=32,
prediction_loss_only=False,
push_to_hub=True,
push_to_hub_model_id=None,
push_to_hub_organization=None,
push_to_hub_token=<PUSH_TO_HUB_TOKEN>,
ray_scope=last,
remove_unused_columns=True,
report_to=['tensorboard'],
restore_callback_states_from_checkpoint=False,
resume_from_checkpoint=None,
run_name=/content/dissertation/scripts/ner/output,
save_on_each_node=False,
save_only_model=False,
save_safetensors=True,
save_steps=500,
save_strategy=epoch,
save_total_limit=None,
seed=42,
skip_memory_metrics=True,
split_batches=None,
tf32=None,
torch_compile=False,
torch_compile_backend=None,
torch_compile_mode=None,
torch_empty_cache_steps=None,
torchdynamo=None,
tpu_metrics_debug=False,
tpu_num_cores=None,
use_cpu=False,
use_ipex=False,
use_legacy_prediction_loop=False,
use_mps_device=False,
warmup_ratio=0.0,
warmup_steps=0,
weight_decay=0.0,
)
Downloading builder script: 0%| | 0.00/3.61k [00:00<?, ?B/s] Downloading builder script: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 3.61k/3.61k [00:00<00:00, 78.5kB/s]
Downloading data: 0%| | 0.00/34.5M [00:00<?, ?B/s] Downloading data: 30%|β–ˆβ–ˆβ–ˆ | 10.5M/34.5M [00:00<00:00, 27.4MB/s] Downloading data: 91%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ | 31.5M/34.5M [00:00<00:00, 68.8MB/s] Downloading data: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 34.5M/34.5M [00:00<00:00, 60.9MB/s]
Downloading data: 0%| | 0.00/7.18M [00:00<?, ?B/s] Downloading data: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 7.18M/7.18M [00:00<00:00, 19.8MB/s] Downloading data: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 7.18M/7.18M [00:00<00:00, 19.5MB/s]
Downloading data: 0%| | 0.00/12.7M [00:00<?, ?B/s] Downloading data: 83%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž | 10.5M/12.7M [00:00<00:00, 37.4MB/s] Downloading data: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 12.7M/12.7M [00:00<00:00, 42.2MB/s]
Generating train split: 0 examples [00:00, ? examples/s] Generating train split: 629 examples [00:00, 6265.46 examples/s] Generating train split: 1556 examples [00:00, 6204.64 examples/s] Generating train split: 2488 examples [00:00, 6205.95 examples/s] Generating train split: 3406 examples [00:00, 6167.51 examples/s] Generating train split: 4041 examples [00:00, 6213.89 examples/s] Generating train split: 4694 examples [00:00, 6300.75 examples/s] Generating train split: 5660 examples [00:00, 6223.79 examples/s] Generating train split: 6591 examples [00:01, 6213.74 examples/s] Generating train split: 7524 examples [00:01, 6214.38 examples/s] Generating train split: 8150 examples [00:01, 6222.43 examples/s] Generating train split: 8794 examples [00:01, 6276.86 examples/s] Generating train split: 9718 examples [00:01, 6232.74 examples/s] Generating train split: 10683 examples [00:01, 6278.76 examples/s] Generating train split: 11320 examples [00:01, 6212.43 examples/s] Generating train split: 11991 examples [00:01, 6336.29 examples/s] Generating train split: 12937 examples [00:02, 6322.15 examples/s] Generating train split: 13872 examples [00:02, 6287.58 examples/s] Generating train split: 14779 examples [00:02, 6206.93 examples/s] Generating train split: 15740 examples [00:02, 6267.13 examples/s] Generating train split: 16655 examples [00:02, 6212.29 examples/s] Generating train split: 17572 examples [00:02, 6178.55 examples/s] Generating train split: 18496 examples [00:02, 6170.88 examples/s] Generating train split: 19446 examples [00:03, 6215.86 examples/s] Generating train split: 20393 examples [00:03, 6241.60 examples/s] Generating train split: 21301 examples [00:03, 6143.32 examples/s] Generating train split: 21969 examples [00:03, 6259.43 examples/s] Generating train split: 22920 examples [00:03, 6282.76 examples/s] Generating train split: 23802 examples [00:03, 6155.07 examples/s] Generating train split: 24700 examples [00:03, 6097.66 examples/s] Generating train split: 25324 examples [00:04, 6015.18 examples/s] Generating train split: 25966 examples [00:04, 6110.40 examples/s] Generating train split: 26860 examples [00:04, 6054.02 examples/s] Generating train split: 27811 examples [00:04, 6144.38 examples/s] Generating train split: 28686 examples [00:04, 6040.41 examples/s] Generating train split: 29546 examples [00:04, 5939.45 examples/s] Generating train split: 30200 examples [00:05, 3880.38 examples/s] Generating train split: 30642 examples [00:05, 5887.40 examples/s]
Generating validation split: 0 examples [00:00, ? examples/s] Generating validation split: 669 examples [00:00, 6669.57 examples/s] Generating validation split: 1655 examples [00:00, 6291.68 examples/s] Generating validation split: 2496 examples [00:00, 5956.66 examples/s] Generating validation split: 3423 examples [00:00, 6043.91 examples/s] Generating validation split: 4364 examples [00:00, 6121.84 examples/s] Generating validation split: 5000 examples [00:00, 6039.18 examples/s] Generating validation split: 5659 examples [00:00, 6184.58 examples/s] Generating validation split: 6534 examples [00:01, 6056.08 examples/s] Generating validation split: 6798 examples [00:01, 5980.17 examples/s]
Generating test split: 0 examples [00:00, ? examples/s] Generating test split: 661 examples [00:00, 6589.02 examples/s] Generating test split: 1355 examples [00:00, 6792.99 examples/s] Generating test split: 2039 examples [00:00, 6809.84 examples/s] Generating test split: 2808 examples [00:00, 7152.56 examples/s] Generating test split: 3854 examples [00:00, 7067.95 examples/s] Generating test split: 4567 examples [00:00, 7084.14 examples/s] Generating test split: 5300 examples [00:00, 7156.26 examples/s] Generating test split: 6078 examples [00:00, 7340.06 examples/s] Generating test split: 6894 examples [00:00, 7582.90 examples/s] Generating test split: 8000 examples [00:01, 7405.88 examples/s] Generating test split: 8822 examples [00:01, 7620.84 examples/s] Generating test split: 9898 examples [00:01, 7453.83 examples/s] Generating test split: 11000 examples [00:01, 7326.21 examples/s] Generating test split: 11833 examples [00:01, 7568.85 examples/s] Generating test split: 12813 examples [00:01, 7209.43 examples/s] Generating test split: 13913 examples [00:01, 7241.27 examples/s] Generating test split: 14605 examples [00:02, 7213.79 examples/s]
[INFO|configuration_utils.py:733] 2024-09-05 13:35:02,046 >> loading configuration file config.json from cache at /root/.cache/huggingface/hub/models--IVN-RIN--bioBIT/snapshots/83755ed79ee254c11854e9f54a53679557271018/config.json
[INFO|configuration_utils.py:800] 2024-09-05 13:35:02,050 >> Model config BertConfig {
"_name_or_path": "IVN-RIN/bioBIT",
"architectures": [
"BertForMaskedLM"
],
"attention_probs_dropout_prob": 0.1,
"classifier_dropout": null,
"finetuning_task": "ner",
"hidden_act": "gelu",
"hidden_dropout_prob": 0.1,
"hidden_size": 768,
"id2label": {
"0": "O",
"1": "B-FARMACO",
"2": "I-FARMACO"
},
"initializer_range": 0.02,
"intermediate_size": 3072,
"label2id": {
"B-FARMACO": 1,
"I-FARMACO": 2,
"O": 0
},
"layer_norm_eps": 1e-12,
"max_position_embeddings": 512,
"model_type": "bert",
"num_attention_heads": 12,
"num_hidden_layers": 12,
"pad_token_id": 0,
"position_embedding_type": "absolute",
"torch_dtype": "float32",
"transformers_version": "4.44.2",
"type_vocab_size": 2,
"use_cache": true,
"vocab_size": 31102
}
[INFO|tokenization_utils_base.py:2269] 2024-09-05 13:35:02,109 >> loading file vocab.txt from cache at /root/.cache/huggingface/hub/models--IVN-RIN--bioBIT/snapshots/83755ed79ee254c11854e9f54a53679557271018/vocab.txt
[INFO|tokenization_utils_base.py:2269] 2024-09-05 13:35:02,109 >> loading file tokenizer.json from cache at /root/.cache/huggingface/hub/models--IVN-RIN--bioBIT/snapshots/83755ed79ee254c11854e9f54a53679557271018/tokenizer.json
[INFO|tokenization_utils_base.py:2269] 2024-09-05 13:35:02,109 >> loading file added_tokens.json from cache at None
[INFO|tokenization_utils_base.py:2269] 2024-09-05 13:35:02,109 >> loading file special_tokens_map.json from cache at /root/.cache/huggingface/hub/models--IVN-RIN--bioBIT/snapshots/83755ed79ee254c11854e9f54a53679557271018/special_tokens_map.json
[INFO|tokenization_utils_base.py:2269] 2024-09-05 13:35:02,109 >> loading file tokenizer_config.json from cache at /root/.cache/huggingface/hub/models--IVN-RIN--bioBIT/snapshots/83755ed79ee254c11854e9f54a53679557271018/tokenizer_config.json
/usr/local/lib/python3.10/dist-packages/transformers/tokenization_utils_base.py:1601: FutureWarning: `clean_up_tokenization_spaces` was not set. It will be set to `True` by default. This behavior will be depracted in transformers v4.45, and will be then set to `False` by default. For more details check this issue: https://github.com/huggingface/transformers/issues/31884
warnings.warn(
[INFO|modeling_utils.py:3678] 2024-09-05 13:35:02,174 >> loading weights file model.safetensors from cache at /root/.cache/huggingface/hub/models--IVN-RIN--bioBIT/snapshots/83755ed79ee254c11854e9f54a53679557271018/model.safetensors
[INFO|modeling_utils.py:4497] 2024-09-05 13:35:02,231 >> Some weights of the model checkpoint at IVN-RIN/bioBIT were not used when initializing BertForTokenClassification: ['cls.predictions.bias', 'cls.predictions.transform.LayerNorm.bias', 'cls.predictions.transform.LayerNorm.weight', 'cls.predictions.transform.dense.bias', 'cls.predictions.transform.dense.weight']
- This IS expected if you are initializing BertForTokenClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).
- This IS NOT expected if you are initializing BertForTokenClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).
[WARNING|modeling_utils.py:4509] 2024-09-05 13:35:02,231 >> Some weights of BertForTokenClassification were not initialized from the model checkpoint at IVN-RIN/bioBIT and are newly initialized: ['classifier.bias', 'classifier.weight']
You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
Map: 0%| | 0/30642 [00:00<?, ? examples/s] Map: 3%|β–Ž | 1000/30642 [00:00<00:03, 8169.45 examples/s] Map: 7%|β–‹ | 2000/30642 [00:00<00:03, 8785.76 examples/s] Map: 10%|β–‰ | 3000/30642 [00:00<00:03, 8977.75 examples/s] Map: 13%|β–ˆβ–Ž | 4000/30642 [00:00<00:03, 8751.64 examples/s] Map: 16%|β–ˆβ–‹ | 5000/30642 [00:00<00:03, 8345.11 examples/s] Map: 20%|β–ˆβ–‰ | 6000/30642 [00:00<00:02, 8334.77 examples/s] Map: 23%|β–ˆβ–ˆβ–Ž | 7000/30642 [00:00<00:02, 8612.88 examples/s] Map: 26%|β–ˆβ–ˆβ–Œ | 8000/30642 [00:00<00:02, 8927.73 examples/s] Map: 29%|β–ˆβ–ˆβ–‰ | 9000/30642 [00:01<00:02, 9082.34 examples/s] Map: 33%|β–ˆβ–ˆβ–ˆβ–Ž | 10000/30642 [00:01<00:02, 9177.53 examples/s] Map: 39%|β–ˆβ–ˆβ–ˆβ–‰ | 12000/30642 [00:01<00:01, 9509.77 examples/s] Map: 46%|β–ˆβ–ˆβ–ˆβ–ˆβ–Œ | 14000/30642 [00:01<00:01, 9728.49 examples/s] Map: 49%|β–ˆβ–ˆβ–ˆβ–ˆβ–‰ | 15000/30642 [00:01<00:01, 9655.08 examples/s] Map: 55%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ | 17000/30642 [00:01<00:01, 9638.66 examples/s] Map: 59%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š | 18000/30642 [00:01<00:01, 9561.14 examples/s] Map: 65%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ | 20000/30642 [00:02<00:01, 9749.12 examples/s] Map: 69%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š | 21000/30642 [00:02<00:00, 9704.18 examples/s] Map: 72%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 22000/30642 [00:02<00:00, 9607.62 examples/s] Map: 75%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ | 23000/30642 [00:02<00:00, 9693.36 examples/s] Map: 78%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š | 24000/30642 [00:02<00:01, 5933.85 examples/s] Map: 82%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 25000/30642 [00:02<00:00, 6544.96 examples/s] Map: 85%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 26000/30642 [00:03<00:00, 6946.89 examples/s] Map: 88%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š | 27000/30642 [00:03<00:00, 7453.27 examples/s] Map: 91%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 28000/30642 [00:03<00:00, 8011.36 examples/s] Map: 95%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 29000/30642 [00:03<00:00, 8395.26 examples/s] Map: 98%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š| 30000/30642 [00:03<00:00, 8574.08 examples/s] Map: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 30642/30642 [00:03<00:00, 8582.41 examples/s]
Map: 0%| | 0/6798 [00:00<?, ? examples/s] Map: 15%|β–ˆβ– | 1000/6798 [00:00<00:00, 9831.13 examples/s] Map: 29%|β–ˆβ–ˆβ–‰ | 2000/6798 [00:00<00:00, 9753.45 examples/s] Map: 59%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰ | 4000/6798 [00:00<00:00, 10236.82 examples/s] Map: 88%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š | 6000/6798 [00:00<00:00, 9421.82 examples/s] Map: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6798/6798 [00:00<00:00, 9492.30 examples/s]
Map: 0%| | 0/14605 [00:00<?, ? examples/s] Map: 14%|β–ˆβ–Ž | 2000/14605 [00:00<00:01, 10766.18 examples/s] Map: 27%|β–ˆβ–ˆβ–‹ | 4000/14605 [00:00<00:01, 10245.05 examples/s] Map: 41%|β–ˆβ–ˆβ–ˆβ–ˆ | 6000/14605 [00:00<00:00, 10485.63 examples/s] Map: 55%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 8000/14605 [00:00<00:00, 10888.80 examples/s] Map: 68%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š | 10000/14605 [00:00<00:00, 10982.67 examples/s] Map: 82%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 12000/14605 [00:01<00:00, 11287.38 examples/s] Map: 96%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ| 14000/14605 [00:01<00:00, 10907.87 examples/s] Map: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 14605/14605 [00:01<00:00, 10808.27 examples/s]
/content/dissertation/scripts/ner/run_ner_train.py:397: FutureWarning: load_metric is deprecated and will be removed in the next major version of datasets. Use 'evaluate.load' instead, from the new library πŸ€— Evaluate: https://huggingface.co/docs/evaluate
metric = load_metric("seqeval", trust_remote_code=True)
[INFO|trainer.py:811] 2024-09-05 13:35:08,966 >> The following columns in the training set don't have a corresponding argument in `BertForTokenClassification.forward` and have been ignored: ner_tags, id, tokens. If ner_tags, id, tokens are not expected by `BertForTokenClassification.forward`, you can safely ignore this message.
[INFO|trainer.py:2134] 2024-09-05 13:35:09,528 >> ***** Running training *****
[INFO|trainer.py:2135] 2024-09-05 13:35:09,528 >> Num examples = 30,642
[INFO|trainer.py:2136] 2024-09-05 13:35:09,528 >> Num Epochs = 10
[INFO|trainer.py:2137] 2024-09-05 13:35:09,528 >> Instantaneous batch size per device = 32
[INFO|trainer.py:2140] 2024-09-05 13:35:09,528 >> Total train batch size (w. parallel, distributed & accumulation) = 64
[INFO|trainer.py:2141] 2024-09-05 13:35:09,528 >> Gradient Accumulation steps = 2
[INFO|trainer.py:2142] 2024-09-05 13:35:09,528 >> Total optimization steps = 4,790
[INFO|trainer.py:2143] 2024-09-05 13:35:09,529 >> Number of trainable parameters = 109,339,395
0%| | 0/4790 [00:00<?, ?it/s] 0%| | 1/4790 [00:01<1:20:56, 1.01s/it] 0%| | 2/4790 [00:01<50:37, 1.58it/s] 0%| | 3/4790 [00:01<37:18, 2.14it/s] 0%| | 4/4790 [00:01<29:46, 2.68it/s] 0%| | 5/4790 [00:02<25:48, 3.09it/s] 0%| | 6/4790 [00:02<26:14, 3.04it/s] 0%| | 7/4790 [00:02<24:55, 3.20it/s] 0%| | 8/4790 [00:02<22:17, 3.57it/s] 0%| | 9/4790 [00:03<21:39, 3.68it/s] 0%| | 10/4790 [00:03<22:52, 3.48it/s] 0%| | 11/4790 [00:03<21:15, 3.75it/s] 0%| | 12/4790 [00:04<22:03, 3.61it/s] 0%| | 13/4790 [00:04<20:44, 3.84it/s] 0%| | 14/4790 [00:04<19:51, 4.01it/s] 0%| | 15/4790 [00:04<18:24, 4.32it/s] 0%| | 16/4790 [00:04<18:34, 4.28it/s] 0%| | 17/4790 [00:05<18:30, 4.30it/s] 0%| | 18/4790 [00:05<18:13, 4.37it/s] 0%| | 19/4790 [00:05<20:34, 3.86it/s] 0%| | 20/4790 [00:05<19:30, 4.07it/s] 0%| | 21/4790 [00:06<19:47, 4.02it/s] 0%| | 22/4790 [00:06<19:42, 4.03it/s] 0%| | 23/4790 [00:06<19:29, 4.08it/s] 1%| | 24/4790 [00:06<20:18, 3.91it/s] 1%| | 25/4790 [00:07<20:17, 3.91it/s] 1%| | 26/4790 [00:07<19:08, 4.15it/s] 1%| | 27/4790 [00:07<18:37, 4.26it/s] 1%| | 28/4790 [00:07<20:30, 3.87it/s] 1%| | 29/4790 [00:08<20:31, 3.86it/s] 1%| | 30/4790 [00:08<21:02, 3.77it/s] 1%| | 31/4790 [00:08<20:09, 3.93it/s] 1%| | 32/4790 [00:09<22:20, 3.55it/s] 1%| | 33/4790 [00:09<20:31, 3.86it/s] 1%| | 34/4790 [00:09<21:36, 3.67it/s] 1%| | 35/4790 [00:09<22:11, 3.57it/s] 1%| | 36/4790 [00:10<20:46, 3.81it/s] 1%| | 37/4790 [00:10<23:52, 3.32it/s] 1%| | 38/4790 [00:10<21:50, 3.63it/s] 1%| | 39/4790 [00:10<22:49, 3.47it/s] 1%| | 40/4790 [00:11<23:36, 3.35it/s] 1%| | 41/4790 [00:11<21:06, 3.75it/s] 1%| | 42/4790 [00:11<20:37, 3.84it/s] 1%| | 43/4790 [00:12<20:36, 3.84it/s] 1%| | 44/4790 [00:12<30:21, 2.61it/s] 1%| | 45/4790 [00:12<26:51, 2.94it/s] 1%| | 46/4790 [00:13<24:36, 3.21it/s] 1%| | 47/4790 [00:13<26:25, 2.99it/s] 1%| | 48/4790 [00:13<24:41, 3.20it/s] 1%| | 49/4790 [00:14<23:30, 3.36it/s] 1%| | 50/4790 [00:14<23:01, 3.43it/s] 1%| | 51/4790 [00:14<22:17, 3.54it/s] 1%| | 52/4790 [00:14<21:00, 3.76it/s] 1%| | 53/4790 [00:15<19:53, 3.97it/s] 1%| | 54/4790 [00:15<19:08, 4.12it/s] 1%| | 55/4790 [00:15<21:09, 3.73it/s] 1%| | 56/4790 [00:15<19:04, 4.14it/s] 1%| | 57/4790 [00:16<20:34, 3.84it/s] 1%| | 58/4790 [00:16<20:14, 3.90it/s] 1%| | 59/4790 [00:16<19:47, 3.98it/s] 1%|▏ | 60/4790 [00:16<22:20, 3.53it/s] 1%|▏ | 61/4790 [00:17<21:23, 3.68it/s] 1%|▏ | 62/4790 [00:17<21:38, 3.64it/s] 1%|▏ | 63/4790 [00:17<22:00, 3.58it/s] 1%|▏ | 64/4790 [00:18<21:29, 3.67it/s] 1%|▏ | 65/4790 [00:18<21:47, 3.61it/s] 1%|▏ | 66/4790 [00:18<20:36, 3.82it/s] 1%|▏ | 67/4790 [00:19<27:23, 2.87it/s] 1%|▏ | 68/4790 [00:19<26:32, 2.97it/s] 1%|▏ | 69/4790 [00:19<24:31, 3.21it/s] 1%|▏ | 70/4790 [00:19<23:00, 3.42it/s] 1%|▏ | 71/4790 [00:20<23:36, 3.33it/s] 2%|▏ | 72/4790 [00:20<22:01, 3.57it/s] 2%|▏ | 73/4790 [00:20<20:12, 3.89it/s] 2%|▏ | 74/4790 [00:20<18:49, 4.17it/s] 2%|▏ | 75/4790 [00:21<20:11, 3.89it/s] 2%|▏ | 76/4790 [00:21<19:23, 4.05it/s] 2%|▏ | 77/4790 [00:21<21:03, 3.73it/s] 2%|▏ | 78/4790 [00:21<20:42, 3.79it/s] 2%|▏ | 79/4790 [00:22<20:11, 3.89it/s] 2%|▏ | 80/4790 [00:22<20:50, 3.77it/s] 2%|▏ | 81/4790 [00:22<19:14, 4.08it/s] 2%|▏ | 82/4790 [00:22<21:12, 3.70it/s] 2%|▏ | 83/4790 [00:23<20:43, 3.78it/s] 2%|▏ | 84/4790 [00:23<21:25, 3.66it/s] 2%|▏ | 85/4790 [00:23<22:19, 3.51it/s] 2%|▏ | 86/4790 [00:24<21:02, 3.72it/s] 2%|▏ | 87/4790 [00:24<19:44, 3.97it/s] 2%|▏ | 88/4790 [00:24<18:39, 4.20it/s] 2%|▏ | 89/4790 [00:24<19:58, 3.92it/s] 2%|▏ | 90/4790 [00:25<20:11, 3.88it/s] 2%|▏ | 91/4790 [00:25<22:09, 3.53it/s] 2%|▏ | 92/4790 [00:25<21:43, 3.60it/s] 2%|▏ | 93/4790 [00:25<20:35, 3.80it/s] 2%|▏ | 94/4790 [00:26<20:45, 3.77it/s] 2%|▏ | 95/4790 [00:26<18:51, 4.15it/s] 2%|▏ | 96/4790 [00:26<23:08, 3.38it/s] 2%|▏ | 97/4790 [00:26<21:22, 3.66it/s] 2%|▏ | 98/4790 [00:27<21:11, 3.69it/s] 2%|▏ | 99/4790 [00:27<23:06, 3.38it/s] 2%|▏ | 100/4790 [00:27<22:34, 3.46it/s] 2%|▏ | 101/4790 [00:28<22:19, 3.50it/s] 2%|▏ | 102/4790 [00:28<22:22, 3.49it/s] 2%|▏ | 103/4790 [00:28<21:22, 3.65it/s] 2%|▏ | 104/4790 [00:28<20:50, 3.75it/s] 2%|▏ | 105/4790 [00:29<19:16, 4.05it/s] 2%|▏ | 106/4790 [00:29<19:27, 4.01it/s] 2%|▏ | 107/4790 [00:29<20:03, 3.89it/s] 2%|▏ | 108/4790 [00:29<21:03, 3.70it/s] 2%|▏ | 109/4790 [00:30<19:57, 3.91it/s] 2%|▏ | 110/4790 [00:30<18:51, 4.14it/s] 2%|▏ | 111/4790 [00:30<19:09, 4.07it/s] 2%|▏ | 112/4790 [00:30<19:05, 4.08it/s] 2%|▏ | 113/4790 [00:31<18:14, 4.27it/s] 2%|▏ | 114/4790 [00:31<18:41, 4.17it/s] 2%|▏ | 115/4790 [00:31<17:37, 4.42it/s] 2%|▏ | 116/4790 [00:31<18:21, 4.24it/s] 2%|▏ | 117/4790 [00:32<20:53, 3.73it/s] 2%|▏ | 118/4790 [00:32<20:04, 3.88it/s] 2%|▏ | 119/4790 [00:32<21:01, 3.70it/s] 3%|β–Ž | 120/4790 [00:32<19:06, 4.07it/s] 3%|β–Ž | 121/4790 [00:33<20:35, 3.78it/s] 3%|β–Ž | 122/4790 [00:33<21:02, 3.70it/s] 3%|β–Ž | 123/4790 [00:33<24:04, 3.23it/s] 3%|β–Ž | 124/4790 [00:34<21:34, 3.60it/s] 3%|β–Ž | 125/4790 [00:34<21:45, 3.57it/s] 3%|β–Ž | 126/4790 [00:34<21:13, 3.66it/s] 3%|β–Ž | 127/4790 [00:34<22:31, 3.45it/s] 3%|β–Ž | 128/4790 [00:35<21:58, 3.54it/s] 3%|β–Ž | 129/4790 [00:35<21:51, 3.55it/s] 3%|β–Ž | 130/4790 [00:35<22:45, 3.41it/s] 3%|β–Ž | 131/4790 [00:36<21:18, 3.64it/s] 3%|β–Ž | 132/4790 [00:36<20:34, 3.77it/s] 3%|β–Ž | 133/4790 [00:36<20:01, 3.88it/s] 3%|β–Ž | 134/4790 [00:36<22:14, 3.49it/s] 3%|β–Ž | 135/4790 [00:37<21:41, 3.58it/s] 3%|β–Ž | 136/4790 [00:37<25:05, 3.09it/s] 3%|β–Ž | 137/4790 [00:37<23:27, 3.31it/s] 3%|β–Ž | 138/4790 [00:38<24:07, 3.21it/s] 3%|β–Ž | 139/4790 [00:38<24:49, 3.12it/s] 3%|β–Ž | 140/4790 [00:38<22:58, 3.37it/s] 3%|β–Ž | 141/4790 [00:38<21:06, 3.67it/s] 3%|β–Ž | 142/4790 [00:39<20:26, 3.79it/s] 3%|β–Ž | 143/4790 [00:39<21:11, 3.65it/s] 3%|β–Ž | 144/4790 [00:39<19:58, 3.88it/s] 3%|β–Ž | 145/4790 [00:39<18:59, 4.08it/s] 3%|β–Ž | 146/4790 [00:40<18:44, 4.13it/s] 3%|β–Ž | 147/4790 [00:40<20:34, 3.76it/s] 3%|β–Ž | 148/4790 [00:40<19:30, 3.97it/s] 3%|β–Ž | 149/4790 [00:41<21:12, 3.65it/s] 3%|β–Ž | 150/4790 [00:41<21:36, 3.58it/s] 3%|β–Ž | 151/4790 [00:41<20:19, 3.80it/s] 3%|β–Ž | 152/4790 [00:41<20:08, 3.84it/s] 3%|β–Ž | 153/4790 [00:42<21:57, 3.52it/s] 3%|β–Ž | 154/4790 [00:42<22:08, 3.49it/s] 3%|β–Ž | 155/4790 [00:42<20:34, 3.76it/s] 3%|β–Ž | 156/4790 [00:42<22:06, 3.49it/s] 3%|β–Ž | 157/4790 [00:43<20:52, 3.70it/s] 3%|β–Ž | 158/4790 [00:43<19:31, 3.95it/s] 3%|β–Ž | 159/4790 [00:43<21:04, 3.66it/s] 3%|β–Ž | 160/4790 [00:44<22:25, 3.44it/s] 3%|β–Ž | 161/4790 [00:44<21:51, 3.53it/s] 3%|β–Ž | 162/4790 [00:44<20:32, 3.75it/s] 3%|β–Ž | 163/4790 [00:44<19:43, 3.91it/s] 3%|β–Ž | 164/4790 [00:45<20:41, 3.72it/s] 3%|β–Ž | 165/4790 [00:45<19:02, 4.05it/s] 3%|β–Ž | 166/4790 [00:45<20:47, 3.71it/s] 3%|β–Ž | 167/4790 [00:45<22:56, 3.36it/s] 4%|β–Ž | 168/4790 [00:46<23:05, 3.34it/s] 4%|β–Ž | 169/4790 [00:46<21:23, 3.60it/s] 4%|β–Ž | 170/4790 [00:46<21:05, 3.65it/s] 4%|β–Ž | 171/4790 [00:47<20:26, 3.76it/s] 4%|β–Ž | 172/4790 [00:47<19:43, 3.90it/s] 4%|β–Ž | 173/4790 [00:47<21:36, 3.56it/s] 4%|β–Ž | 174/4790 [00:47<21:23, 3.60it/s] 4%|β–Ž | 175/4790 [00:48<20:53, 3.68it/s] 4%|β–Ž | 176/4790 [00:48<20:12, 3.81it/s] 4%|β–Ž | 177/4790 [00:48<19:38, 3.92it/s] 4%|β–Ž | 178/4790 [00:48<19:02, 4.04it/s] 4%|β–Ž | 179/4790 [00:49<18:51, 4.08it/s] 4%|▍ | 180/4790 [00:49<17:55, 4.29it/s] 4%|▍ | 181/4790 [00:49<20:31, 3.74it/s] 4%|▍ | 182/4790 [00:49<19:12, 4.00it/s] 4%|▍ | 183/4790 [00:50<19:09, 4.01it/s] 4%|▍ | 184/4790 [00:50<17:15, 4.45it/s] 4%|▍ | 185/4790 [00:50<21:16, 3.61it/s] 4%|▍ | 186/4790 [00:50<21:56, 3.50it/s] 4%|▍ | 187/4790 [00:51<21:13, 3.61it/s] 4%|▍ | 188/4790 [00:51<19:37, 3.91it/s] 4%|▍ | 189/4790 [00:51<19:49, 3.87it/s] 4%|▍ | 190/4790 [00:51<19:27, 3.94it/s] 4%|▍ | 191/4790 [00:52<18:22, 4.17it/s] 4%|▍ | 192/4790 [00:52<19:45, 3.88it/s] 4%|▍ | 193/4790 [00:52<19:55, 3.85it/s] 4%|▍ | 194/4790 [00:52<19:56, 3.84it/s] 4%|▍ | 195/4790 [00:53<19:34, 3.91it/s] 4%|▍ | 196/4790 [00:53<18:31, 4.13it/s] 4%|▍ | 197/4790 [00:53<17:44, 4.32it/s] 4%|▍ | 198/4790 [00:53<19:39, 3.89it/s] 4%|▍ | 199/4790 [00:54<19:52, 3.85it/s] 4%|▍ | 200/4790 [00:54<19:50, 3.86it/s] 4%|▍ | 201/4790 [00:54<20:10, 3.79it/s] 4%|▍ | 202/4790 [00:54<18:09, 4.21it/s] 4%|▍ | 203/4790 [00:55<18:39, 4.10it/s] 4%|▍ | 204/4790 [00:55<23:44, 3.22it/s] 4%|▍ | 205/4790 [00:55<21:02, 3.63it/s] 4%|▍ | 206/4790 [00:56<20:28, 3.73it/s] 4%|▍ | 207/4790 [00:56<19:35, 3.90it/s] 4%|▍ | 208/4790 [00:56<19:23, 3.94it/s] 4%|▍ | 209/4790 [00:56<20:38, 3.70it/s] 4%|▍ | 210/4790 [00:57<20:28, 3.73it/s] 4%|▍ | 211/4790 [00:57<21:45, 3.51it/s] 4%|▍ | 212/4790 [00:57<19:52, 3.84it/s] 4%|▍ | 213/4790 [00:57<19:25, 3.93it/s] 4%|▍ | 214/4790 [00:58<18:19, 4.16it/s] 4%|▍ | 215/4790 [00:58<19:07, 3.99it/s] 5%|▍ | 216/4790 [00:58<19:16, 3.96it/s] 5%|▍ | 217/4790 [00:58<20:18, 3.75it/s] 5%|▍ | 218/4790 [00:59<21:08, 3.61it/s] 5%|▍ | 219/4790 [00:59<19:39, 3.88it/s] 5%|▍ | 220/4790 [00:59<19:09, 3.97it/s] 5%|▍ | 221/4790 [00:59<18:31, 4.11it/s] 5%|▍ | 222/4790 [01:00<17:59, 4.23it/s] 5%|▍ | 223/4790 [01:00<18:22, 4.14it/s] 5%|▍ | 224/4790 [01:00<18:34, 4.10it/s] 5%|▍ | 225/4790 [01:00<18:29, 4.12it/s] 5%|▍ | 226/4790 [01:01<22:07, 3.44it/s] 5%|▍ | 227/4790 [01:01<21:26, 3.55it/s] 5%|▍ | 228/4790 [01:01<20:48, 3.65it/s] 5%|▍ | 229/4790 [01:02<20:04, 3.79it/s] 5%|▍ | 230/4790 [01:02<19:58, 3.80it/s] 5%|▍ | 231/4790 [01:02<23:39, 3.21it/s] 5%|▍ | 232/4790 [01:02<22:14, 3.42it/s] 5%|▍ | 233/4790 [01:03<22:43, 3.34it/s] 5%|▍ | 234/4790 [01:03<22:02, 3.45it/s] 5%|▍ | 235/4790 [01:03<20:39, 3.67it/s] 5%|▍ | 236/4790 [01:04<23:49, 3.18it/s] 5%|▍ | 237/4790 [01:04<24:54, 3.05it/s] 5%|▍ | 238/4790 [01:04<24:56, 3.04it/s] 5%|▍ | 239/4790 [01:05<24:16, 3.12it/s] 5%|β–Œ | 240/4790 [01:05<22:37, 3.35it/s] 5%|β–Œ | 241/4790 [01:05<26:11, 2.89it/s] 5%|β–Œ | 242/4790 [01:06<23:40, 3.20it/s] 5%|β–Œ | 243/4790 [01:06<24:51, 3.05it/s] 5%|β–Œ | 244/4790 [01:06<24:47, 3.06it/s] 5%|β–Œ | 245/4790 [01:07<22:59, 3.29it/s] 5%|β–Œ | 246/4790 [01:07<22:32, 3.36it/s] 5%|β–Œ | 247/4790 [01:07<20:16, 3.73it/s] 5%|β–Œ | 248/4790 [01:07<19:43, 3.84it/s] 5%|β–Œ | 249/4790 [01:08<21:41, 3.49it/s] 5%|β–Œ | 250/4790 [01:08<25:08, 3.01it/s] 5%|β–Œ | 251/4790 [01:08<25:17, 2.99it/s] 5%|β–Œ | 252/4790 [01:09<22:38, 3.34it/s] 5%|β–Œ | 253/4790 [01:09<20:45, 3.64it/s] 5%|β–Œ | 254/4790 [01:09<19:55, 3.79it/s] 5%|β–Œ | 255/4790 [01:09<19:58, 3.78it/s] 5%|β–Œ | 256/4790 [01:10<20:54, 3.61it/s] 5%|β–Œ | 257/4790 [01:10<22:47, 3.32it/s] 5%|β–Œ | 258/4790 [01:10<20:47, 3.63it/s] 5%|β–Œ | 259/4790 [01:10<18:58, 3.98it/s] 5%|β–Œ | 260/4790 [01:11<21:14, 3.55it/s] 5%|β–Œ | 261/4790 [01:11<20:03, 3.76it/s] 5%|β–Œ | 262/4790 [01:11<21:05, 3.58it/s] 5%|β–Œ | 263/4790 [01:12<21:12, 3.56it/s] 6%|β–Œ | 264/4790 [01:12<20:51, 3.62it/s] 6%|β–Œ | 265/4790 [01:12<22:23, 3.37it/s] 6%|β–Œ | 266/4790 [01:13<21:56, 3.44it/s] 6%|β–Œ | 267/4790 [01:13<22:31, 3.35it/s] 6%|β–Œ | 268/4790 [01:13<21:57, 3.43it/s] 6%|β–Œ | 269/4790 [01:13<22:48, 3.30it/s] 6%|β–Œ | 270/4790 [01:14<22:38, 3.33it/s] 6%|β–Œ | 271/4790 [01:14<21:37, 3.48it/s] 6%|β–Œ | 272/4790 [01:14<19:41, 3.82it/s] 6%|β–Œ | 273/4790 [01:14<18:42, 4.02it/s] 6%|β–Œ | 274/4790 [01:15<18:50, 3.99it/s] 6%|β–Œ | 275/4790 [01:15<19:49, 3.79it/s] 6%|β–Œ | 276/4790 [01:15<17:32, 4.29it/s] 6%|β–Œ | 277/4790 [01:15<16:46, 4.48it/s] 6%|β–Œ | 278/4790 [01:16<16:39, 4.51it/s] 6%|β–Œ | 279/4790 [01:16<18:49, 3.99it/s] 6%|β–Œ | 280/4790 [01:16<17:38, 4.26it/s] 6%|β–Œ | 281/4790 [01:16<16:33, 4.54it/s] 6%|β–Œ | 282/4790 [01:17<20:05, 3.74it/s] 6%|β–Œ | 283/4790 [01:17<18:27, 4.07it/s] 6%|β–Œ | 284/4790 [01:17<18:32, 4.05it/s] 6%|β–Œ | 285/4790 [01:17<18:28, 4.07it/s] 6%|β–Œ | 286/4790 [01:18<18:14, 4.12it/s] 6%|β–Œ | 287/4790 [01:18<21:27, 3.50it/s] 6%|β–Œ | 288/4790 [01:18<21:52, 3.43it/s] 6%|β–Œ | 289/4790 [01:18<20:33, 3.65it/s] 6%|β–Œ | 290/4790 [01:19<21:24, 3.50it/s] 6%|β–Œ | 291/4790 [01:19<20:36, 3.64it/s] 6%|β–Œ | 292/4790 [01:19<19:57, 3.76it/s] 6%|β–Œ | 293/4790 [01:20<24:15, 3.09it/s] 6%|β–Œ | 294/4790 [01:20<22:18, 3.36it/s] 6%|β–Œ | 295/4790 [01:20<23:18, 3.21it/s] 6%|β–Œ | 296/4790 [01:21<25:14, 2.97it/s] 6%|β–Œ | 297/4790 [01:21<24:18, 3.08it/s] 6%|β–Œ | 298/4790 [01:21<21:32, 3.48it/s] 6%|β–Œ | 299/4790 [01:21<20:51, 3.59it/s] 6%|β–‹ | 300/4790 [01:22<19:20, 3.87it/s] 6%|β–‹ | 301/4790 [01:22<19:39, 3.81it/s] 6%|β–‹ | 302/4790 [01:22<19:31, 3.83it/s] 6%|β–‹ | 303/4790 [01:22<20:12, 3.70it/s] 6%|β–‹ | 304/4790 [01:23<19:28, 3.84it/s] 6%|β–‹ | 305/4790 [01:23<19:17, 3.88it/s] 6%|β–‹ | 306/4790 [01:23<17:51, 4.18it/s] 6%|β–‹ | 307/4790 [01:23<18:10, 4.11it/s] 6%|β–‹ | 308/4790 [01:24<23:32, 3.17it/s] 6%|β–‹ | 309/4790 [01:24<21:51, 3.42it/s] 6%|β–‹ | 310/4790 [01:24<20:53, 3.57it/s] 6%|β–‹ | 311/4790 [01:25<20:05, 3.72it/s] 7%|β–‹ | 312/4790 [01:25<19:17, 3.87it/s] 7%|β–‹ | 313/4790 [01:25<19:03, 3.91it/s] 7%|β–‹ | 314/4790 [01:25<21:26, 3.48it/s] 7%|β–‹ | 315/4790 [01:26<20:37, 3.61it/s] 7%|β–‹ | 316/4790 [01:26<20:04, 3.71it/s] 7%|β–‹ | 317/4790 [01:26<19:26, 3.83it/s] 7%|β–‹ | 318/4790 [01:27<20:44, 3.59it/s] 7%|β–‹ | 319/4790 [01:27<19:54, 3.74it/s] 7%|β–‹ | 320/4790 [01:27<22:32, 3.30it/s] 7%|β–‹ | 321/4790 [01:27<21:02, 3.54it/s] 7%|β–‹ | 322/4790 [01:28<21:39, 3.44it/s] 7%|β–‹ | 323/4790 [01:28<21:36, 3.45it/s] 7%|β–‹ | 324/4790 [01:28<20:08, 3.70it/s] 7%|β–‹ | 325/4790 [01:29<20:12, 3.68it/s] 7%|β–‹ | 326/4790 [01:29<18:55, 3.93it/s] 7%|β–‹ | 327/4790 [01:29<18:47, 3.96it/s] 7%|β–‹ | 328/4790 [01:29<17:11, 4.33it/s] 7%|β–‹ | 329/4790 [01:29<19:41, 3.78it/s] 7%|β–‹ | 330/4790 [01:30<19:27, 3.82it/s] 7%|β–‹ | 331/4790 [01:30<19:14, 3.86it/s] 7%|β–‹ | 332/4790 [01:30<19:45, 3.76it/s] 7%|β–‹ | 333/4790 [01:31<19:15, 3.86it/s] 7%|β–‹ | 334/4790 [01:31<19:12, 3.86it/s] 7%|β–‹ | 335/4790 [01:31<19:52, 3.74it/s] 7%|β–‹ | 336/4790 [01:31<21:35, 3.44it/s] 7%|β–‹ | 337/4790 [01:32<25:21, 2.93it/s] 7%|β–‹ | 338/4790 [01:32<24:09, 3.07it/s] 7%|β–‹ | 339/4790 [01:32<21:21, 3.47it/s] 7%|β–‹ | 340/4790 [01:33<21:04, 3.52it/s] 7%|β–‹ | 341/4790 [01:33<21:03, 3.52it/s] 7%|β–‹ | 342/4790 [01:33<18:26, 4.02it/s] 7%|β–‹ | 343/4790 [01:33<17:48, 4.16it/s] 7%|β–‹ | 344/4790 [01:34<16:38, 4.45it/s] 7%|β–‹ | 345/4790 [01:34<18:20, 4.04it/s] 7%|β–‹ | 346/4790 [01:34<18:51, 3.93it/s] 7%|β–‹ | 347/4790 [01:34<18:24, 4.02it/s] 7%|β–‹ | 348/4790 [01:35<18:23, 4.02it/s] 7%|β–‹ | 349/4790 [01:35<19:05, 3.88it/s] 7%|β–‹ | 350/4790 [01:35<18:45, 3.94it/s] 7%|β–‹ | 351/4790 [01:35<19:40, 3.76it/s] 7%|β–‹ | 352/4790 [01:36<20:27, 3.62it/s] 7%|β–‹ | 353/4790 [01:36<20:13, 3.66it/s] 7%|β–‹ | 354/4790 [01:36<21:46, 3.39it/s] 7%|β–‹ | 355/4790 [01:37<20:23, 3.62it/s] 7%|β–‹ | 356/4790 [01:37<20:12, 3.66it/s] 7%|β–‹ | 357/4790 [01:37<20:34, 3.59it/s] 7%|β–‹ | 358/4790 [01:37<20:09, 3.66it/s] 7%|β–‹ | 359/4790 [01:38<21:14, 3.48it/s] 8%|β–Š | 360/4790 [01:38<20:40, 3.57it/s] 8%|β–Š | 361/4790 [01:38<19:59, 3.69it/s] 8%|β–Š | 362/4790 [01:39<23:39, 3.12it/s] 8%|β–Š | 363/4790 [01:39<23:06, 3.19it/s] 8%|β–Š | 364/4790 [01:39<21:44, 3.39it/s] 8%|β–Š | 365/4790 [01:39<20:51, 3.54it/s] 8%|β–Š | 366/4790 [01:40<20:37, 3.57it/s] 8%|β–Š | 367/4790 [01:40<20:49, 3.54it/s] 8%|β–Š | 368/4790 [01:40<19:58, 3.69it/s] 8%|β–Š | 369/4790 [01:41<23:59, 3.07it/s] 8%|β–Š | 370/4790 [01:41<24:54, 2.96it/s] 8%|β–Š | 371/4790 [01:41<23:32, 3.13it/s] 8%|β–Š | 372/4790 [01:42<24:14, 3.04it/s] 8%|β–Š | 373/4790 [01:42<21:57, 3.35it/s] 8%|β–Š | 374/4790 [01:42<20:08, 3.65it/s] 8%|β–Š | 375/4790 [01:43<23:55, 3.08it/s] 8%|β–Š | 376/4790 [01:43<23:20, 3.15it/s] 8%|β–Š | 377/4790 [01:43<20:48, 3.53it/s] 8%|β–Š | 378/4790 [01:43<20:24, 3.60it/s] 8%|β–Š | 379/4790 [01:44<19:31, 3.77it/s] 8%|β–Š | 380/4790 [01:44<19:40, 3.74it/s] 8%|β–Š | 381/4790 [01:44<18:52, 3.89it/s] 8%|β–Š | 382/4790 [01:44<17:12, 4.27it/s] 8%|β–Š | 383/4790 [01:44<16:23, 4.48it/s] 8%|β–Š | 384/4790 [01:45<16:58, 4.32it/s] 8%|β–Š | 385/4790 [01:45<19:00, 3.86it/s] 8%|β–Š | 386/4790 [01:45<20:09, 3.64it/s] 8%|β–Š | 387/4790 [01:46<21:31, 3.41it/s] 8%|β–Š | 388/4790 [01:46<20:03, 3.66it/s] 8%|β–Š | 389/4790 [01:46<22:50, 3.21it/s] 8%|β–Š | 390/4790 [01:46<20:16, 3.62it/s] 8%|β–Š | 391/4790 [01:47<21:09, 3.47it/s] 8%|β–Š | 392/4790 [01:47<19:30, 3.76it/s] 8%|β–Š | 393/4790 [01:47<17:51, 4.10it/s] 8%|β–Š | 394/4790 [01:47<17:49, 4.11it/s] 8%|β–Š | 395/4790 [01:48<18:08, 4.04it/s] 8%|β–Š | 396/4790 [01:48<17:36, 4.16it/s] 8%|β–Š | 397/4790 [01:48<19:35, 3.74it/s] 8%|β–Š | 398/4790 [01:49<20:26, 3.58it/s] 8%|β–Š | 399/4790 [01:49<20:14, 3.61it/s] 8%|β–Š | 400/4790 [01:49<18:53, 3.87it/s] 8%|β–Š | 401/4790 [01:49<19:57, 3.67it/s] 8%|β–Š | 402/4790 [01:50<18:32, 3.94it/s] 8%|β–Š | 403/4790 [01:50<18:04, 4.05it/s] 8%|β–Š | 404/4790 [01:50<17:58, 4.07it/s] 8%|β–Š | 405/4790 [01:50<18:34, 3.94it/s] 8%|β–Š | 406/4790 [01:51<19:41, 3.71it/s] 8%|β–Š | 407/4790 [01:51<18:06, 4.03it/s] 9%|β–Š | 408/4790 [01:51<19:27, 3.75it/s] 9%|β–Š | 409/4790 [01:51<18:26, 3.96it/s] 9%|β–Š | 410/4790 [01:52<18:19, 3.98it/s] 9%|β–Š | 411/4790 [01:52<19:04, 3.83it/s] 9%|β–Š | 412/4790 [01:52<22:31, 3.24it/s] 9%|β–Š | 413/4790 [01:53<22:04, 3.30it/s] 9%|β–Š | 414/4790 [01:53<20:44, 3.52it/s] 9%|β–Š | 415/4790 [01:53<19:50, 3.67it/s] 9%|β–Š | 416/4790 [01:53<20:30, 3.55it/s] 9%|β–Š | 417/4790 [01:54<19:17, 3.78it/s] 9%|β–Š | 418/4790 [01:54<17:48, 4.09it/s] 9%|β–Š | 419/4790 [01:54<17:43, 4.11it/s] 9%|β–‰ | 420/4790 [01:54<17:57, 4.06it/s] 9%|β–‰ | 421/4790 [01:55<18:55, 3.85it/s] 9%|β–‰ | 422/4790 [01:55<18:49, 3.87it/s] 9%|β–‰ | 423/4790 [01:55<18:09, 4.01it/s] 9%|β–‰ | 424/4790 [01:55<18:01, 4.04it/s] 9%|β–‰ | 425/4790 [01:56<18:29, 3.93it/s] 9%|β–‰ | 426/4790 [01:56<18:20, 3.97it/s] 9%|β–‰ | 427/4790 [01:56<17:21, 4.19it/s] 9%|β–‰ | 428/4790 [01:56<17:53, 4.06it/s] 9%|β–‰ | 429/4790 [01:57<17:32, 4.14it/s] 9%|β–‰ | 430/4790 [01:57<16:50, 4.32it/s] 9%|β–‰ | 431/4790 [01:57<16:49, 4.32it/s] 9%|β–‰ | 432/4790 [01:57<16:52, 4.30it/s] 9%|β–‰ | 433/4790 [01:57<16:16, 4.46it/s] 9%|β–‰ | 434/4790 [01:58<17:52, 4.06it/s] 9%|β–‰ | 435/4790 [01:58<17:23, 4.17it/s] 9%|β–‰ | 436/4790 [01:58<16:56, 4.28it/s] 9%|β–‰ | 437/4790 [01:58<19:06, 3.80it/s] 9%|β–‰ | 438/4790 [01:59<19:18, 3.76it/s] 9%|β–‰ | 439/4790 [01:59<18:51, 3.84it/s] 9%|β–‰ | 440/4790 [01:59<19:20, 3.75it/s] 9%|β–‰ | 441/4790 [02:00<20:58, 3.46it/s] 9%|β–‰ | 442/4790 [02:00<20:20, 3.56it/s] 9%|β–‰ | 443/4790 [02:00<20:12, 3.58it/s] 9%|β–‰ | 444/4790 [02:00<18:59, 3.81it/s] 9%|β–‰ | 445/4790 [02:01<17:37, 4.11it/s] 9%|β–‰ | 446/4790 [02:01<19:02, 3.80it/s] 9%|β–‰ | 447/4790 [02:01<17:38, 4.10it/s] 9%|β–‰ | 448/4790 [02:01<17:54, 4.04it/s] 9%|β–‰ | 449/4790 [02:02<16:45, 4.32it/s] 9%|β–‰ | 450/4790 [02:02<17:07, 4.22it/s] 9%|β–‰ | 451/4790 [02:02<16:06, 4.49it/s] 9%|β–‰ | 452/4790 [02:02<19:32, 3.70it/s] 9%|β–‰ | 453/4790 [02:03<19:30, 3.70it/s] 9%|β–‰ | 454/4790 [02:03<18:34, 3.89it/s] 9%|β–‰ | 455/4790 [02:03<17:23, 4.16it/s] 10%|β–‰ | 456/4790 [02:03<18:24, 3.92it/s] 10%|β–‰ | 457/4790 [02:04<25:31, 2.83it/s] 10%|β–‰ | 458/4790 [02:04<23:07, 3.12it/s] 10%|β–‰ | 459/4790 [02:05<23:20, 3.09it/s] 10%|β–‰ | 460/4790 [02:05<22:18, 3.24it/s] 10%|β–‰ | 461/4790 [02:05<21:41, 3.33it/s] 10%|β–‰ | 462/4790 [02:05<20:15, 3.56it/s] 10%|β–‰ | 463/4790 [02:06<24:21, 2.96it/s] 10%|β–‰ | 464/4790 [02:06<21:39, 3.33it/s] 10%|β–‰ | 465/4790 [02:06<19:06, 3.77it/s] 10%|β–‰ | 466/4790 [02:06<18:17, 3.94it/s] 10%|β–‰ | 467/4790 [02:07<18:49, 3.83it/s] 10%|β–‰ | 468/4790 [02:07<18:49, 3.83it/s] 10%|β–‰ | 469/4790 [02:07<18:00, 4.00it/s] 10%|β–‰ | 470/4790 [02:07<18:25, 3.91it/s] 10%|β–‰ | 471/4790 [02:08<20:39, 3.49it/s] 10%|β–‰ | 472/4790 [02:08<20:58, 3.43it/s] 10%|β–‰ | 473/4790 [02:08<20:46, 3.46it/s] 10%|β–‰ | 474/4790 [02:09<19:24, 3.71it/s] 10%|β–‰ | 475/4790 [02:09<17:54, 4.02it/s] 10%|β–‰ | 476/4790 [02:09<18:35, 3.87it/s] 10%|β–‰ | 477/4790 [02:09<17:33, 4.09it/s] 10%|β–‰ | 478/4790 [02:10<20:27, 3.51it/s] 10%|β–ˆ | 479/4790 [02:10<19:05, 3.76it/s][INFO|trainer.py:811] 2024-09-05 13:37:19,924 >> The following columns in the evaluation set don't have a corresponding argument in `BertForTokenClassification.forward` and have been ignored: ner_tags, id, tokens. If ner_tags, id, tokens are not expected by `BertForTokenClassification.forward`, you can safely ignore this message.
[INFO|trainer.py:3819] 2024-09-05 13:37:19,927 >>
***** Running Evaluation *****
[INFO|trainer.py:3821] 2024-09-05 13:37:19,927 >> Num examples = 6798
[INFO|trainer.py:3824] 2024-09-05 13:37:19,927 >> Batch size = 8
0%| | 0/850 [00:00<?, ?it/s]
1%| | 9/850 [00:00<00:11, 75.89it/s]
2%|▏ | 18/850 [00:00<00:10, 78.45it/s]
3%|β–Ž | 27/850 [00:00<00:10, 80.37it/s]
4%|▍ | 37/850 [00:00<00:09, 84.54it/s]
5%|β–Œ | 46/850 [00:00<00:09, 85.60it/s]
6%|β–‹ | 55/850 [00:00<00:10, 78.60it/s]
8%|β–Š | 64/850 [00:00<00:09, 79.44it/s]
9%|β–Š | 73/850 [00:00<00:10, 75.52it/s]
10%|β–‰ | 81/850 [00:01<00:10, 76.28it/s]
11%|β–ˆ | 90/850 [00:01<00:09, 80.04it/s]
12%|β–ˆβ– | 99/850 [00:01<00:09, 82.32it/s]
13%|β–ˆβ–Ž | 109/850 [00:01<00:08, 84.86it/s]
14%|β–ˆβ– | 118/850 [00:01<00:08, 85.25it/s]
15%|β–ˆβ– | 127/850 [00:01<00:08, 86.48it/s]
16%|β–ˆβ–Œ | 136/850 [00:01<00:08, 85.42it/s]
17%|β–ˆβ–‹ | 145/850 [00:01<00:08, 81.53it/s]
18%|β–ˆβ–Š | 154/850 [00:01<00:08, 82.60it/s]
19%|β–ˆβ–‰ | 163/850 [00:01<00:08, 84.65it/s]
20%|β–ˆβ–ˆ | 172/850 [00:02<00:07, 85.43it/s]
21%|β–ˆβ–ˆβ– | 181/850 [00:02<00:07, 85.66it/s]
22%|β–ˆβ–ˆβ– | 190/850 [00:02<00:07, 84.23it/s]
23%|β–ˆβ–ˆβ–Ž | 199/850 [00:02<00:07, 85.01it/s]
24%|β–ˆβ–ˆβ– | 208/850 [00:02<00:07, 83.44it/s]
26%|β–ˆβ–ˆβ–Œ | 217/850 [00:02<00:07, 81.88it/s]
27%|β–ˆβ–ˆβ–‹ | 227/850 [00:02<00:07, 84.16it/s]
28%|β–ˆβ–ˆβ–Š | 237/850 [00:02<00:07, 86.15it/s]
29%|β–ˆβ–ˆβ–‰ | 246/850 [00:02<00:07, 84.46it/s]
30%|β–ˆβ–ˆβ–ˆ | 256/850 [00:03<00:06, 88.24it/s]
31%|β–ˆβ–ˆβ–ˆ | 265/850 [00:03<00:06, 87.70it/s]
32%|β–ˆβ–ˆβ–ˆβ– | 275/850 [00:03<00:06, 88.16it/s]
33%|β–ˆβ–ˆβ–ˆβ–Ž | 284/850 [00:03<00:06, 87.65it/s]
35%|β–ˆβ–ˆβ–ˆβ– | 294/850 [00:03<00:06, 88.09it/s]
36%|β–ˆβ–ˆβ–ˆβ–Œ | 303/850 [00:03<00:06, 86.09it/s]
37%|β–ˆβ–ˆβ–ˆβ–‹ | 313/850 [00:03<00:06, 87.89it/s]
38%|β–ˆβ–ˆβ–ˆβ–Š | 322/850 [00:03<00:06, 87.79it/s]
39%|β–ˆβ–ˆβ–ˆβ–‰ | 331/850 [00:03<00:05, 87.25it/s]
40%|β–ˆβ–ˆβ–ˆβ–ˆ | 340/850 [00:04<00:05, 87.67it/s]
41%|β–ˆβ–ˆβ–ˆβ–ˆ | 349/850 [00:04<00:05, 86.98it/s]
42%|β–ˆβ–ˆβ–ˆβ–ˆβ– | 358/850 [00:04<00:05, 85.62it/s]
43%|β–ˆβ–ˆβ–ˆβ–ˆβ–Ž | 367/850 [00:04<00:05, 85.83it/s]
44%|β–ˆβ–ˆβ–ˆβ–ˆβ– | 376/850 [00:04<00:05, 84.60it/s]
45%|β–ˆβ–ˆβ–ˆβ–ˆβ–Œ | 385/850 [00:04<00:05, 82.20it/s]
46%|β–ˆβ–ˆβ–ˆβ–ˆβ–‹ | 394/850 [00:04<00:05, 80.28it/s]
47%|β–ˆβ–ˆβ–ˆβ–ˆβ–‹ | 403/850 [00:04<00:05, 81.93it/s]
49%|β–ˆβ–ˆβ–ˆβ–ˆβ–Š | 413/850 [00:04<00:05, 85.88it/s]
50%|β–ˆβ–ˆβ–ˆβ–ˆβ–‰ | 423/850 [00:05<00:04, 87.54it/s]
51%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ | 432/850 [00:05<00:04, 87.55it/s]
52%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 441/850 [00:05<00:04, 86.85it/s]
53%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž | 450/850 [00:05<00:04, 83.69it/s]
54%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 460/850 [00:05<00:04, 86.80it/s]
55%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ | 470/850 [00:05<00:04, 88.96it/s]
56%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹ | 480/850 [00:05<00:04, 90.23it/s]
58%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š | 490/850 [00:05<00:04, 88.23it/s]
59%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰ | 500/850 [00:05<00:03, 89.90it/s]
60%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ | 510/850 [00:05<00:03, 89.99it/s]
61%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ | 520/850 [00:06<00:03, 90.30it/s]
62%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 530/850 [00:06<00:03, 86.55it/s]
63%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž | 539/850 [00:06<00:03, 85.36it/s]
64%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 548/850 [00:06<00:03, 83.42it/s]
66%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ | 557/850 [00:06<00:03, 83.02it/s]
67%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹ | 566/850 [00:06<00:03, 80.41it/s]
68%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š | 575/850 [00:06<00:03, 82.97it/s]
69%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š | 584/850 [00:06<00:03, 83.09it/s]
70%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰ | 593/850 [00:06<00:03, 84.13it/s]
71%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ | 602/850 [00:07<00:02, 83.90it/s]
72%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 611/850 [00:07<00:02, 84.78it/s]
73%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž | 620/850 [00:07<00:02, 84.83it/s]
74%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 629/850 [00:07<00:02, 84.00it/s]
75%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ | 638/850 [00:07<00:02, 84.53it/s]
76%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ | 647/850 [00:07<00:02, 85.90it/s]
77%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹ | 656/850 [00:07<00:02, 86.93it/s]
78%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š | 666/850 [00:07<00:02, 88.25it/s]
79%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰ | 675/850 [00:07<00:02, 85.00it/s]
80%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ | 684/850 [00:08<00:01, 85.36it/s]
82%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 693/850 [00:08<00:01, 83.16it/s]
83%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž | 702/850 [00:08<00:01, 83.49it/s]
84%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž | 711/850 [00:08<00:01, 82.74it/s]
85%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 720/850 [00:08<00:01, 83.13it/s]
86%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ | 729/850 [00:08<00:01, 80.00it/s]
87%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹ | 738/850 [00:08<00:01, 80.48it/s]
88%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š | 747/850 [00:08<00:01, 80.29it/s]
89%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰ | 756/850 [00:08<00:01, 80.87it/s]
90%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ | 765/850 [00:09<00:01, 82.87it/s]
91%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ | 774/850 [00:09<00:00, 82.26it/s]
92%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 783/850 [00:09<00:00, 80.12it/s]
93%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž| 792/850 [00:09<00:00, 79.96it/s]
94%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 802/850 [00:09<00:00, 83.67it/s]
95%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ| 811/850 [00:09<00:00, 81.61it/s]
97%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹| 821/850 [00:09<00:00, 85.11it/s]
98%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š| 830/850 [00:09<00:00, 84.40it/s]
99%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š| 839/850 [00:09<00:00, 84.53it/s]
100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰| 848/850 [00:10<00:00, 86.03it/s]
 10%|β–ˆ | 479/4790 [02:24<19:05, 3.76it/s]
100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 850/850 [00:14<00:00, 86.03it/s]
[INFO|trainer.py:3503] 2024-09-05 13:37:33,956 >> Saving model checkpoint to /content/dissertation/scripts/ner/output/checkpoint-479
[INFO|configuration_utils.py:472] 2024-09-05 13:37:33,957 >> Configuration saved in /content/dissertation/scripts/ner/output/checkpoint-479/config.json
[INFO|modeling_utils.py:2799] 2024-09-05 13:37:34,851 >> Model weights saved in /content/dissertation/scripts/ner/output/checkpoint-479/model.safetensors
[INFO|tokenization_utils_base.py:2684] 2024-09-05 13:37:34,852 >> tokenizer config file saved in /content/dissertation/scripts/ner/output/checkpoint-479/tokenizer_config.json
[INFO|tokenization_utils_base.py:2693] 2024-09-05 13:37:34,852 >> Special tokens file saved in /content/dissertation/scripts/ner/output/checkpoint-479/special_tokens_map.json
[INFO|tokenization_utils_base.py:2684] 2024-09-05 13:37:36,650 >> tokenizer config file saved in /content/dissertation/scripts/ner/output/tokenizer_config.json
[INFO|tokenization_utils_base.py:2693] 2024-09-05 13:37:36,650 >> Special tokens file saved in /content/dissertation/scripts/ner/output/special_tokens_map.json
10%|β–ˆ | 480/4790 [02:27<6:21:25, 5.31s/it] 10%|β–ˆ | 481/4790 [02:27<4:31:30, 3.78s/it] 10%|β–ˆ | 482/4790 [02:27<3:16:31, 2.74s/it] 10%|β–ˆ | 483/4790 [02:28<2:25:49, 2.03s/it] 10%|β–ˆ | 484/4790 [02:28<1:46:37, 1.49s/it] 10%|β–ˆ | 485/4790 [02:28<1:22:39, 1.15s/it] 10%|β–ˆ | 486/4790 [02:29<1:02:21, 1.15it/s] 10%|β–ˆ | 487/4790 [02:29<50:31, 1.42it/s] 10%|β–ˆ | 488/4790 [02:29<41:55, 1.71it/s] 10%|β–ˆ | 489/4790 [02:29<33:13, 2.16it/s] 10%|β–ˆ | 490/4790 [02:30<29:22, 2.44it/s] 10%|β–ˆ | 491/4790 [02:30<24:58, 2.87it/s] 10%|β–ˆ | 492/4790 [02:30<22:15, 3.22it/s] 10%|β–ˆ | 493/4790 [02:30<20:11, 3.55it/s] 10%|β–ˆ | 494/4790 [02:31<20:24, 3.51it/s] 10%|β–ˆ | 495/4790 [02:31<19:16, 3.71it/s] 10%|β–ˆ | 496/4790 [02:31<19:33, 3.66it/s] 10%|β–ˆ | 497/4790 [02:32<21:30, 3.33it/s] 10%|β–ˆ | 498/4790 [02:32<22:35, 3.17it/s] 10%|β–ˆ | 499/4790 [02:32<20:38, 3.46it/s] 10%|β–ˆ | 500/4790 [02:32<19:03, 3.75it/s] 10%|β–ˆ | 500/4790 [02:32<19:03, 3.75it/s] 10%|β–ˆ | 501/4790 [02:33<19:03, 3.75it/s] 10%|β–ˆ | 502/4790 [02:33<19:37, 3.64it/s] 11%|β–ˆ | 503/4790 [02:33<18:13, 3.92it/s] 11%|β–ˆ | 504/4790 [02:34<21:59, 3.25it/s] 11%|β–ˆ | 505/4790 [02:34<20:52, 3.42it/s] 11%|β–ˆ | 506/4790 [02:34<20:21, 3.51it/s] 11%|β–ˆ | 507/4790 [02:34<18:42, 3.82it/s] 11%|β–ˆ | 508/4790 [02:35<22:26, 3.18it/s] 11%|β–ˆ | 509/4790 [02:35<22:30, 3.17it/s] 11%|β–ˆ | 510/4790 [02:35<21:05, 3.38it/s] 11%|β–ˆ | 511/4790 [02:36<19:19, 3.69it/s] 11%|β–ˆ | 512/4790 [02:36<19:44, 3.61it/s] 11%|β–ˆ | 513/4790 [02:36<20:22, 3.50it/s] 11%|β–ˆ | 514/4790 [02:36<19:52, 3.59it/s] 11%|β–ˆ | 515/4790 [02:37<21:09, 3.37it/s] 11%|β–ˆ | 516/4790 [02:37<20:38, 3.45it/s] 11%|β–ˆ | 517/4790 [02:37<20:57, 3.40it/s] 11%|β–ˆ | 518/4790 [02:38<19:47, 3.60it/s] 11%|β–ˆ | 519/4790 [02:38<18:21, 3.88it/s]