Rodrigo1771
commited on
Training in progress, epoch 1
Browse files- README.md +102 -0
- all_results.json +26 -0
- config.json +36 -0
- eval_results.json +12 -0
- model.safetensors +3 -0
- predict_results.json +10 -0
- predictions.txt +0 -0
- special_tokens_map.json +37 -0
- tb/events.out.tfevents.1725539834.da2ff10c1388.1139.0 +3 -0
- tb/events.out.tfevents.1725541385.da2ff10c1388.1139.1 +3 -0
- tb/events.out.tfevents.1725541614.da2ff10c1388.8786.0 +3 -0
- tb/events.out.tfevents.1725543147.da2ff10c1388.8786.1 +3 -0
- tb/events.out.tfevents.1725543309.da2ff10c1388.16078.0 +3 -0
- tokenizer.json +0 -0
- tokenizer_config.json +59 -0
- train.log +320 -0
- train_results.json +9 -0
- trainer_state.json +225 -0
- training_args.bin +3 -0
- vocab.txt +0 -0
README.md
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
base_model: IVN-RIN/bioBIT
|
4 |
+
tags:
|
5 |
+
- token-classification
|
6 |
+
- generated_from_trainer
|
7 |
+
datasets:
|
8 |
+
- Rodrigo1771/drugtemist-it-8-ner
|
9 |
+
metrics:
|
10 |
+
- precision
|
11 |
+
- recall
|
12 |
+
- f1
|
13 |
+
- accuracy
|
14 |
+
model-index:
|
15 |
+
- name: output
|
16 |
+
results:
|
17 |
+
- task:
|
18 |
+
name: Token Classification
|
19 |
+
type: token-classification
|
20 |
+
dataset:
|
21 |
+
name: Rodrigo1771/drugtemist-it-8-ner
|
22 |
+
type: Rodrigo1771/drugtemist-it-8-ner
|
23 |
+
config: DrugTEMIST Italian NER
|
24 |
+
split: validation
|
25 |
+
args: DrugTEMIST Italian NER
|
26 |
+
metrics:
|
27 |
+
- name: Precision
|
28 |
+
type: precision
|
29 |
+
value: 0.9122468659594986
|
30 |
+
- name: Recall
|
31 |
+
type: recall
|
32 |
+
value: 0.9157792836398838
|
33 |
+
- name: F1
|
34 |
+
type: f1
|
35 |
+
value: 0.9140096618357488
|
36 |
+
- name: Accuracy
|
37 |
+
type: accuracy
|
38 |
+
value: 0.9985198649701377
|
39 |
+
---
|
40 |
+
|
41 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
42 |
+
should probably proofread and complete it, then remove this comment. -->
|
43 |
+
|
44 |
+
# output
|
45 |
+
|
46 |
+
This model is a fine-tuned version of [IVN-RIN/bioBIT](https://huggingface.co/IVN-RIN/bioBIT) on the Rodrigo1771/drugtemist-it-8-ner dataset.
|
47 |
+
It achieves the following results on the evaluation set:
|
48 |
+
- Loss: 0.0085
|
49 |
+
- Precision: 0.9122
|
50 |
+
- Recall: 0.9158
|
51 |
+
- F1: 0.9140
|
52 |
+
- Accuracy: 0.9985
|
53 |
+
|
54 |
+
## Model description
|
55 |
+
|
56 |
+
More information needed
|
57 |
+
|
58 |
+
## Intended uses & limitations
|
59 |
+
|
60 |
+
More information needed
|
61 |
+
|
62 |
+
## Training and evaluation data
|
63 |
+
|
64 |
+
More information needed
|
65 |
+
|
66 |
+
## Training procedure
|
67 |
+
|
68 |
+
### Training hyperparameters
|
69 |
+
|
70 |
+
The following hyperparameters were used during training:
|
71 |
+
- learning_rate: 5e-05
|
72 |
+
- train_batch_size: 32
|
73 |
+
- eval_batch_size: 8
|
74 |
+
- seed: 42
|
75 |
+
- gradient_accumulation_steps: 2
|
76 |
+
- total_train_batch_size: 64
|
77 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
78 |
+
- lr_scheduler_type: linear
|
79 |
+
- num_epochs: 10.0
|
80 |
+
|
81 |
+
### Training results
|
82 |
+
|
83 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
84 |
+
|:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
85 |
+
| No log | 0.9990 | 494 | 0.0050 | 0.8807 | 0.9003 | 0.8904 | 0.9983 |
|
86 |
+
| 0.0131 | 2.0 | 989 | 0.0046 | 0.9034 | 0.9148 | 0.9091 | 0.9985 |
|
87 |
+
| 0.0037 | 2.9990 | 1483 | 0.0068 | 0.8972 | 0.9129 | 0.9050 | 0.9984 |
|
88 |
+
| 0.0021 | 4.0 | 1978 | 0.0069 | 0.8807 | 0.9293 | 0.9044 | 0.9983 |
|
89 |
+
| 0.0012 | 4.9990 | 2472 | 0.0073 | 0.8865 | 0.9226 | 0.9042 | 0.9984 |
|
90 |
+
| 0.0006 | 6.0 | 2967 | 0.0077 | 0.8932 | 0.9313 | 0.9118 | 0.9984 |
|
91 |
+
| 0.0004 | 6.9990 | 3461 | 0.0072 | 0.8978 | 0.9274 | 0.9124 | 0.9985 |
|
92 |
+
| 0.0004 | 8.0 | 3956 | 0.0078 | 0.9138 | 0.9129 | 0.9133 | 0.9986 |
|
93 |
+
| 0.0001 | 8.9990 | 4450 | 0.0084 | 0.9138 | 0.9138 | 0.9138 | 0.9986 |
|
94 |
+
| 0.0001 | 9.9899 | 4940 | 0.0085 | 0.9122 | 0.9158 | 0.9140 | 0.9985 |
|
95 |
+
|
96 |
+
|
97 |
+
### Framework versions
|
98 |
+
|
99 |
+
- Transformers 4.44.2
|
100 |
+
- Pytorch 2.4.0+cu121
|
101 |
+
- Datasets 2.21.0
|
102 |
+
- Tokenizers 0.19.1
|
all_results.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 9.989888776541962,
|
3 |
+
"eval_accuracy": 0.9985198649701377,
|
4 |
+
"eval_f1": 0.9140096618357488,
|
5 |
+
"eval_loss": 0.008521749638020992,
|
6 |
+
"eval_precision": 0.9122468659594986,
|
7 |
+
"eval_recall": 0.9157792836398838,
|
8 |
+
"eval_runtime": 14.0315,
|
9 |
+
"eval_samples": 6798,
|
10 |
+
"eval_samples_per_second": 484.48,
|
11 |
+
"eval_steps_per_second": 60.578,
|
12 |
+
"predict_accuracy": 0.9982115932160268,
|
13 |
+
"predict_f1": 0.8982300884955752,
|
14 |
+
"predict_loss": 0.011793443001806736,
|
15 |
+
"predict_precision": 0.8874316939890711,
|
16 |
+
"predict_recall": 0.9092945128779395,
|
17 |
+
"predict_runtime": 27.4059,
|
18 |
+
"predict_samples_per_second": 532.915,
|
19 |
+
"predict_steps_per_second": 66.628,
|
20 |
+
"total_flos": 1.7928149517546354e+16,
|
21 |
+
"train_loss": 0.002201772875978276,
|
22 |
+
"train_runtime": 1511.1925,
|
23 |
+
"train_samples": 31619,
|
24 |
+
"train_samples_per_second": 209.232,
|
25 |
+
"train_steps_per_second": 3.269
|
26 |
+
}
|
config.json
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "IVN-RIN/bioBIT",
|
3 |
+
"architectures": [
|
4 |
+
"BertForTokenClassification"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"finetuning_task": "ner",
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 768,
|
12 |
+
"id2label": {
|
13 |
+
"0": "O",
|
14 |
+
"1": "B-FARMACO",
|
15 |
+
"2": "I-FARMACO"
|
16 |
+
},
|
17 |
+
"initializer_range": 0.02,
|
18 |
+
"intermediate_size": 3072,
|
19 |
+
"label2id": {
|
20 |
+
"B-FARMACO": 1,
|
21 |
+
"I-FARMACO": 2,
|
22 |
+
"O": 0
|
23 |
+
},
|
24 |
+
"layer_norm_eps": 1e-12,
|
25 |
+
"max_position_embeddings": 512,
|
26 |
+
"model_type": "bert",
|
27 |
+
"num_attention_heads": 12,
|
28 |
+
"num_hidden_layers": 12,
|
29 |
+
"pad_token_id": 0,
|
30 |
+
"position_embedding_type": "absolute",
|
31 |
+
"torch_dtype": "float32",
|
32 |
+
"transformers_version": "4.44.2",
|
33 |
+
"type_vocab_size": 2,
|
34 |
+
"use_cache": true,
|
35 |
+
"vocab_size": 31102
|
36 |
+
}
|
eval_results.json
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 9.989888776541962,
|
3 |
+
"eval_accuracy": 0.9985198649701377,
|
4 |
+
"eval_f1": 0.9140096618357488,
|
5 |
+
"eval_loss": 0.008521749638020992,
|
6 |
+
"eval_precision": 0.9122468659594986,
|
7 |
+
"eval_recall": 0.9157792836398838,
|
8 |
+
"eval_runtime": 14.0315,
|
9 |
+
"eval_samples": 6798,
|
10 |
+
"eval_samples_per_second": 484.48,
|
11 |
+
"eval_steps_per_second": 60.578
|
12 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c3daec2c688aa0a46d9db382fbf86ed161eca7c49c159572a0d4bad0e523defb
|
3 |
+
size 437380924
|
predict_results.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"predict_accuracy": 0.9982115932160268,
|
3 |
+
"predict_f1": 0.8982300884955752,
|
4 |
+
"predict_loss": 0.011793443001806736,
|
5 |
+
"predict_precision": 0.8874316939890711,
|
6 |
+
"predict_recall": 0.9092945128779395,
|
7 |
+
"predict_runtime": 27.4059,
|
8 |
+
"predict_samples_per_second": 532.915,
|
9 |
+
"predict_steps_per_second": 66.628
|
10 |
+
}
|
predictions.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tb/events.out.tfevents.1725539834.da2ff10c1388.1139.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b7c63f332f72d5e8ce062a3570a23e513552485e35f9c3e717f676a61770d4de
|
3 |
+
size 12077
|
tb/events.out.tfevents.1725541385.da2ff10c1388.1139.1
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5a6b4673a2b54281137b214f6b38c5f460343279bcdc24f6bbcb40b41533804b
|
3 |
+
size 560
|
tb/events.out.tfevents.1725541614.da2ff10c1388.8786.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4584b4d5777e5b7f96447a5414d6b2ef6ff8feef93772e32125e6e667e4a082c
|
3 |
+
size 12077
|
tb/events.out.tfevents.1725543147.da2ff10c1388.8786.1
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:271b965f32982eddbd96116b6a0e21c0c303d7829ea9fa6ebdbd89621c357117
|
3 |
+
size 560
|
tb/events.out.tfevents.1725543309.da2ff10c1388.16078.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:15f77f4dbef1c3beb3875e5f7a213fc0182c8d07213f227ef8289a8f2a3570cf
|
3 |
+
size 5576
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"101": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"102": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"103": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"104": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_basic_tokenize": true,
|
47 |
+
"do_lower_case": false,
|
48 |
+
"mask_token": "[MASK]",
|
49 |
+
"max_len": 512,
|
50 |
+
"model_max_length": 512,
|
51 |
+
"never_split": null,
|
52 |
+
"pad_token": "[PAD]",
|
53 |
+
"sep_token": "[SEP]",
|
54 |
+
"strip_accents": null,
|
55 |
+
"tokenize_chinese_chars": true,
|
56 |
+
"tokenizer_class": "BertTokenizer",
|
57 |
+
"truncation": true,
|
58 |
+
"unk_token": "[UNK]"
|
59 |
+
}
|
train.log
ADDED
@@ -0,0 +1,320 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0 |
0%| | 0/4790 [00:00<?, ?it/s]
|
1 |
0%| | 1/4790 [00:01<1:20:56, 1.01s/it]
|
2 |
0%| | 2/4790 [00:01<50:37, 1.58it/s]
|
3 |
0%| | 3/4790 [00:01<37:18, 2.14it/s]
|
4 |
0%| | 4/4790 [00:01<29:46, 2.68it/s]
|
5 |
0%| | 5/4790 [00:02<25:48, 3.09it/s]
|
6 |
0%| | 6/4790 [00:02<26:14, 3.04it/s]
|
7 |
0%| | 7/4790 [00:02<24:55, 3.20it/s]
|
8 |
0%| | 8/4790 [00:02<22:17, 3.57it/s]
|
9 |
0%| | 9/4790 [00:03<21:39, 3.68it/s]
|
10 |
0%| | 10/4790 [00:03<22:52, 3.48it/s]
|
11 |
0%| | 11/4790 [00:03<21:15, 3.75it/s]
|
12 |
0%| | 12/4790 [00:04<22:03, 3.61it/s]
|
13 |
0%| | 13/4790 [00:04<20:44, 3.84it/s]
|
14 |
0%| | 14/4790 [00:04<19:51, 4.01it/s]
|
15 |
0%| | 15/4790 [00:04<18:24, 4.32it/s]
|
16 |
0%| | 16/4790 [00:04<18:34, 4.28it/s]
|
17 |
0%| | 17/4790 [00:05<18:30, 4.30it/s]
|
18 |
0%| | 18/4790 [00:05<18:13, 4.37it/s]
|
19 |
0%| | 19/4790 [00:05<20:34, 3.86it/s]
|
20 |
0%| | 20/4790 [00:05<19:30, 4.07it/s]
|
21 |
0%| | 21/4790 [00:06<19:47, 4.02it/s]
|
22 |
0%| | 22/4790 [00:06<19:42, 4.03it/s]
|
23 |
0%| | 23/4790 [00:06<19:29, 4.08it/s]
|
24 |
1%| | 24/4790 [00:06<20:18, 3.91it/s]
|
25 |
1%| | 25/4790 [00:07<20:17, 3.91it/s]
|
26 |
1%| | 26/4790 [00:07<19:08, 4.15it/s]
|
27 |
1%| | 27/4790 [00:07<18:37, 4.26it/s]
|
28 |
1%| | 28/4790 [00:07<20:30, 3.87it/s]
|
29 |
1%| | 29/4790 [00:08<20:31, 3.86it/s]
|
30 |
1%| | 30/4790 [00:08<21:02, 3.77it/s]
|
31 |
1%| | 31/4790 [00:08<20:09, 3.93it/s]
|
32 |
1%| | 32/4790 [00:09<22:20, 3.55it/s]
|
33 |
1%| | 33/4790 [00:09<20:31, 3.86it/s]
|
34 |
1%| | 34/4790 [00:09<21:36, 3.67it/s]
|
35 |
1%| | 35/4790 [00:09<22:11, 3.57it/s]
|
36 |
1%| | 36/4790 [00:10<20:46, 3.81it/s]
|
37 |
1%| | 37/4790 [00:10<23:52, 3.32it/s]
|
38 |
1%| | 38/4790 [00:10<21:50, 3.63it/s]
|
39 |
1%| | 39/4790 [00:10<22:49, 3.47it/s]
|
40 |
1%| | 40/4790 [00:11<23:36, 3.35it/s]
|
41 |
1%| | 41/4790 [00:11<21:06, 3.75it/s]
|
42 |
1%| | 42/4790 [00:11<20:37, 3.84it/s]
|
43 |
1%| | 43/4790 [00:12<20:36, 3.84it/s]
|
44 |
1%| | 44/4790 [00:12<30:21, 2.61it/s]
|
45 |
1%| | 45/4790 [00:12<26:51, 2.94it/s]
|
46 |
1%| | 46/4790 [00:13<24:36, 3.21it/s]
|
47 |
1%| | 47/4790 [00:13<26:25, 2.99it/s]
|
48 |
1%| | 48/4790 [00:13<24:41, 3.20it/s]
|
49 |
1%| | 49/4790 [00:14<23:30, 3.36it/s]
|
50 |
1%| | 50/4790 [00:14<23:01, 3.43it/s]
|
51 |
1%| | 51/4790 [00:14<22:17, 3.54it/s]
|
52 |
1%| | 52/4790 [00:14<21:00, 3.76it/s]
|
53 |
1%| | 53/4790 [00:15<19:53, 3.97it/s]
|
54 |
1%| | 54/4790 [00:15<19:08, 4.12it/s]
|
55 |
1%| | 55/4790 [00:15<21:09, 3.73it/s]
|
56 |
1%| | 56/4790 [00:15<19:04, 4.14it/s]
|
57 |
1%| | 57/4790 [00:16<20:34, 3.84it/s]
|
58 |
1%| | 58/4790 [00:16<20:14, 3.90it/s]
|
59 |
1%| | 59/4790 [00:16<19:47, 3.98it/s]
|
60 |
1%|▏ | 60/4790 [00:16<22:20, 3.53it/s]
|
61 |
1%|▏ | 61/4790 [00:17<21:23, 3.68it/s]
|
62 |
1%|▏ | 62/4790 [00:17<21:38, 3.64it/s]
|
63 |
1%|▏ | 63/4790 [00:17<22:00, 3.58it/s]
|
64 |
1%|▏ | 64/4790 [00:18<21:29, 3.67it/s]
|
65 |
1%|▏ | 65/4790 [00:18<21:47, 3.61it/s]
|
66 |
1%|▏ | 66/4790 [00:18<20:36, 3.82it/s]
|
67 |
1%|▏ | 67/4790 [00:19<27:23, 2.87it/s]
|
68 |
1%|▏ | 68/4790 [00:19<26:32, 2.97it/s]
|
69 |
1%|▏ | 69/4790 [00:19<24:31, 3.21it/s]
|
70 |
1%|▏ | 70/4790 [00:19<23:00, 3.42it/s]
|
71 |
1%|▏ | 71/4790 [00:20<23:36, 3.33it/s]
|
72 |
2%|▏ | 72/4790 [00:20<22:01, 3.57it/s]
|
73 |
2%|▏ | 73/4790 [00:20<20:12, 3.89it/s]
|
74 |
2%|▏ | 74/4790 [00:20<18:49, 4.17it/s]
|
75 |
2%|▏ | 75/4790 [00:21<20:11, 3.89it/s]
|
76 |
2%|▏ | 76/4790 [00:21<19:23, 4.05it/s]
|
77 |
2%|▏ | 77/4790 [00:21<21:03, 3.73it/s]
|
78 |
2%|▏ | 78/4790 [00:21<20:42, 3.79it/s]
|
79 |
2%|▏ | 79/4790 [00:22<20:11, 3.89it/s]
|
80 |
2%|▏ | 80/4790 [00:22<20:50, 3.77it/s]
|
81 |
2%|▏ | 81/4790 [00:22<19:14, 4.08it/s]
|
82 |
2%|▏ | 82/4790 [00:22<21:12, 3.70it/s]
|
83 |
2%|▏ | 83/4790 [00:23<20:43, 3.78it/s]
|
84 |
2%|▏ | 84/4790 [00:23<21:25, 3.66it/s]
|
85 |
2%|▏ | 85/4790 [00:23<22:19, 3.51it/s]
|
86 |
2%|▏ | 86/4790 [00:24<21:02, 3.72it/s]
|
87 |
2%|▏ | 87/4790 [00:24<19:44, 3.97it/s]
|
88 |
2%|▏ | 88/4790 [00:24<18:39, 4.20it/s]
|
89 |
2%|▏ | 89/4790 [00:24<19:58, 3.92it/s]
|
90 |
2%|▏ | 90/4790 [00:25<20:11, 3.88it/s]
|
91 |
2%|▏ | 91/4790 [00:25<22:09, 3.53it/s]
|
92 |
2%|▏ | 92/4790 [00:25<21:43, 3.60it/s]
|
93 |
2%|▏ | 93/4790 [00:25<20:35, 3.80it/s]
|
94 |
2%|▏ | 94/4790 [00:26<20:45, 3.77it/s]
|
95 |
2%|▏ | 95/4790 [00:26<18:51, 4.15it/s]
|
96 |
2%|▏ | 96/4790 [00:26<23:08, 3.38it/s]
|
97 |
2%|▏ | 97/4790 [00:26<21:22, 3.66it/s]
|
98 |
2%|▏ | 98/4790 [00:27<21:11, 3.69it/s]
|
99 |
2%|▏ | 99/4790 [00:27<23:06, 3.38it/s]
|
100 |
2%|▏ | 100/4790 [00:27<22:34, 3.46it/s]
|
101 |
2%|▏ | 101/4790 [00:28<22:19, 3.50it/s]
|
102 |
2%|▏ | 102/4790 [00:28<22:22, 3.49it/s]
|
103 |
2%|▏ | 103/4790 [00:28<21:22, 3.65it/s]
|
104 |
2%|▏ | 104/4790 [00:28<20:50, 3.75it/s]
|
105 |
2%|▏ | 105/4790 [00:29<19:16, 4.05it/s]
|
106 |
2%|▏ | 106/4790 [00:29<19:27, 4.01it/s]
|
107 |
2%|▏ | 107/4790 [00:29<20:03, 3.89it/s]
|
108 |
2%|▏ | 108/4790 [00:29<21:03, 3.70it/s]
|
109 |
2%|▏ | 109/4790 [00:30<19:57, 3.91it/s]
|
110 |
2%|▏ | 110/4790 [00:30<18:51, 4.14it/s]
|
111 |
2%|▏ | 111/4790 [00:30<19:09, 4.07it/s]
|
112 |
2%|▏ | 112/4790 [00:30<19:05, 4.08it/s]
|
113 |
2%|▏ | 113/4790 [00:31<18:14, 4.27it/s]
|
114 |
2%|▏ | 114/4790 [00:31<18:41, 4.17it/s]
|
115 |
2%|▏ | 115/4790 [00:31<17:37, 4.42it/s]
|
116 |
2%|▏ | 116/4790 [00:31<18:21, 4.24it/s]
|
117 |
2%|▏ | 117/4790 [00:32<20:53, 3.73it/s]
|
118 |
2%|▏ | 118/4790 [00:32<20:04, 3.88it/s]
|
119 |
2%|▏ | 119/4790 [00:32<21:01, 3.70it/s]
|
120 |
3%|▎ | 120/4790 [00:32<19:06, 4.07it/s]
|
121 |
3%|▎ | 121/4790 [00:33<20:35, 3.78it/s]
|
122 |
3%|▎ | 122/4790 [00:33<21:02, 3.70it/s]
|
123 |
3%|▎ | 123/4790 [00:33<24:04, 3.23it/s]
|
124 |
3%|▎ | 124/4790 [00:34<21:34, 3.60it/s]
|
125 |
3%|▎ | 125/4790 [00:34<21:45, 3.57it/s]
|
126 |
3%|▎ | 126/4790 [00:34<21:13, 3.66it/s]
|
127 |
3%|▎ | 127/4790 [00:34<22:31, 3.45it/s]
|
128 |
3%|▎ | 128/4790 [00:35<21:58, 3.54it/s]
|
129 |
3%|▎ | 129/4790 [00:35<21:51, 3.55it/s]
|
130 |
3%|▎ | 130/4790 [00:35<22:45, 3.41it/s]
|
131 |
3%|▎ | 131/4790 [00:36<21:18, 3.64it/s]
|
132 |
3%|▎ | 132/4790 [00:36<20:34, 3.77it/s]
|
133 |
3%|▎ | 133/4790 [00:36<20:01, 3.88it/s]
|
134 |
3%|▎ | 134/4790 [00:36<22:14, 3.49it/s]
|
135 |
3%|▎ | 135/4790 [00:37<21:41, 3.58it/s]
|
136 |
3%|▎ | 136/4790 [00:37<25:05, 3.09it/s]
|
137 |
3%|▎ | 137/4790 [00:37<23:27, 3.31it/s]
|
138 |
3%|▎ | 138/4790 [00:38<24:07, 3.21it/s]
|
139 |
3%|▎ | 139/4790 [00:38<24:49, 3.12it/s]
|
140 |
3%|▎ | 140/4790 [00:38<22:58, 3.37it/s]
|
141 |
3%|▎ | 141/4790 [00:38<21:06, 3.67it/s]
|
142 |
3%|▎ | 142/4790 [00:39<20:26, 3.79it/s]
|
143 |
3%|▎ | 143/4790 [00:39<21:11, 3.65it/s]
|
144 |
3%|▎ | 144/4790 [00:39<19:58, 3.88it/s]
|
145 |
3%|▎ | 145/4790 [00:39<18:59, 4.08it/s]
|
146 |
3%|▎ | 146/4790 [00:40<18:44, 4.13it/s]
|
147 |
3%|▎ | 147/4790 [00:40<20:34, 3.76it/s]
|
148 |
3%|▎ | 148/4790 [00:40<19:30, 3.97it/s]
|
149 |
3%|▎ | 149/4790 [00:41<21:12, 3.65it/s]
|
150 |
3%|▎ | 150/4790 [00:41<21:36, 3.58it/s]
|
151 |
3%|▎ | 151/4790 [00:41<20:19, 3.80it/s]
|
152 |
3%|▎ | 152/4790 [00:41<20:08, 3.84it/s]
|
153 |
3%|▎ | 153/4790 [00:42<21:57, 3.52it/s]
|
154 |
3%|▎ | 154/4790 [00:42<22:08, 3.49it/s]
|
155 |
3%|▎ | 155/4790 [00:42<20:34, 3.76it/s]
|
156 |
3%|▎ | 156/4790 [00:42<22:06, 3.49it/s]
|
157 |
3%|▎ | 157/4790 [00:43<20:52, 3.70it/s]
|
158 |
3%|▎ | 158/4790 [00:43<19:31, 3.95it/s]
|
159 |
3%|▎ | 159/4790 [00:43<21:04, 3.66it/s]
|
160 |
3%|▎ | 160/4790 [00:44<22:25, 3.44it/s]
|
161 |
3%|▎ | 161/4790 [00:44<21:51, 3.53it/s]
|
162 |
3%|▎ | 162/4790 [00:44<20:32, 3.75it/s]
|
163 |
3%|▎ | 163/4790 [00:44<19:43, 3.91it/s]
|
164 |
3%|▎ | 164/4790 [00:45<20:41, 3.72it/s]
|
165 |
3%|▎ | 165/4790 [00:45<19:02, 4.05it/s]
|
166 |
3%|▎ | 166/4790 [00:45<20:47, 3.71it/s]
|
167 |
3%|▎ | 167/4790 [00:45<22:56, 3.36it/s]
|
168 |
4%|▎ | 168/4790 [00:46<23:05, 3.34it/s]
|
169 |
4%|▎ | 169/4790 [00:46<21:23, 3.60it/s]
|
170 |
4%|▎ | 170/4790 [00:46<21:05, 3.65it/s]
|
171 |
4%|▎ | 171/4790 [00:47<20:26, 3.76it/s]
|
172 |
4%|▎ | 172/4790 [00:47<19:43, 3.90it/s]
|
173 |
4%|▎ | 173/4790 [00:47<21:36, 3.56it/s]
|
174 |
4%|▎ | 174/4790 [00:47<21:23, 3.60it/s]
|
175 |
4%|▎ | 175/4790 [00:48<20:53, 3.68it/s]
|
176 |
4%|▎ | 176/4790 [00:48<20:12, 3.81it/s]
|
177 |
4%|▎ | 177/4790 [00:48<19:38, 3.92it/s]
|
178 |
4%|▎ | 178/4790 [00:48<19:02, 4.04it/s]
|
179 |
4%|▎ | 179/4790 [00:49<18:51, 4.08it/s]
|
180 |
4%|▍ | 180/4790 [00:49<17:55, 4.29it/s]
|
181 |
4%|▍ | 181/4790 [00:49<20:31, 3.74it/s]
|
182 |
4%|▍ | 182/4790 [00:49<19:12, 4.00it/s]
|
183 |
4%|▍ | 183/4790 [00:50<19:09, 4.01it/s]
|
184 |
4%|▍ | 184/4790 [00:50<17:15, 4.45it/s]
|
185 |
4%|▍ | 185/4790 [00:50<21:16, 3.61it/s]
|
186 |
4%|▍ | 186/4790 [00:50<21:56, 3.50it/s]
|
187 |
4%|▍ | 187/4790 [00:51<21:13, 3.61it/s]
|
188 |
4%|▍ | 188/4790 [00:51<19:37, 3.91it/s]
|
189 |
4%|▍ | 189/4790 [00:51<19:49, 3.87it/s]
|
190 |
4%|▍ | 190/4790 [00:51<19:27, 3.94it/s]
|
191 |
4%|▍ | 191/4790 [00:52<18:22, 4.17it/s]
|
192 |
4%|▍ | 192/4790 [00:52<19:45, 3.88it/s]
|
193 |
4%|▍ | 193/4790 [00:52<19:55, 3.85it/s]
|
194 |
4%|▍ | 194/4790 [00:52<19:56, 3.84it/s]
|
195 |
4%|▍ | 195/4790 [00:53<19:34, 3.91it/s]
|
196 |
4%|▍ | 196/4790 [00:53<18:31, 4.13it/s]
|
197 |
4%|▍ | 197/4790 [00:53<17:44, 4.32it/s]
|
198 |
4%|▍ | 198/4790 [00:53<19:39, 3.89it/s]
|
199 |
4%|▍ | 199/4790 [00:54<19:52, 3.85it/s]
|
200 |
4%|▍ | 200/4790 [00:54<19:50, 3.86it/s]
|
201 |
4%|▍ | 201/4790 [00:54<20:10, 3.79it/s]
|
202 |
4%|▍ | 202/4790 [00:54<18:09, 4.21it/s]
|
203 |
4%|▍ | 203/4790 [00:55<18:39, 4.10it/s]
|
204 |
4%|▍ | 204/4790 [00:55<23:44, 3.22it/s]
|
205 |
4%|▍ | 205/4790 [00:55<21:02, 3.63it/s]
|
206 |
4%|▍ | 206/4790 [00:56<20:28, 3.73it/s]
|
207 |
4%|▍ | 207/4790 [00:56<19:35, 3.90it/s]
|
208 |
4%|▍ | 208/4790 [00:56<19:23, 3.94it/s]
|
209 |
4%|▍ | 209/4790 [00:56<20:38, 3.70it/s]
|
210 |
4%|▍ | 210/4790 [00:57<20:28, 3.73it/s]
|
211 |
4%|▍ | 211/4790 [00:57<21:45, 3.51it/s]
|
212 |
4%|▍ | 212/4790 [00:57<19:52, 3.84it/s]
|
213 |
4%|▍ | 213/4790 [00:57<19:25, 3.93it/s]
|
214 |
4%|▍ | 214/4790 [00:58<18:19, 4.16it/s]
|
215 |
4%|▍ | 215/4790 [00:58<19:07, 3.99it/s]
|
216 |
5%|▍ | 216/4790 [00:58<19:16, 3.96it/s]
|
217 |
5%|▍ | 217/4790 [00:58<20:18, 3.75it/s]
|
218 |
5%|▍ | 218/4790 [00:59<21:08, 3.61it/s]
|
219 |
5%|▍ | 219/4790 [00:59<19:39, 3.88it/s]
|
220 |
5%|▍ | 220/4790 [00:59<19:09, 3.97it/s]
|
221 |
5%|▍ | 221/4790 [00:59<18:31, 4.11it/s]
|
222 |
5%|▍ | 222/4790 [01:00<17:59, 4.23it/s]
|
223 |
5%|▍ | 223/4790 [01:00<18:22, 4.14it/s]
|
224 |
5%|▍ | 224/4790 [01:00<18:34, 4.10it/s]
|
225 |
5%|▍ | 225/4790 [01:00<18:29, 4.12it/s]
|
226 |
5%|▍ | 226/4790 [01:01<22:07, 3.44it/s]
|
227 |
5%|▍ | 227/4790 [01:01<21:26, 3.55it/s]
|
228 |
5%|▍ | 228/4790 [01:01<20:48, 3.65it/s]
|
229 |
5%|▍ | 229/4790 [01:02<20:04, 3.79it/s]
|
230 |
5%|▍ | 230/4790 [01:02<19:58, 3.80it/s]
|
231 |
5%|▍ | 231/4790 [01:02<23:39, 3.21it/s]
|
232 |
5%|▍ | 232/4790 [01:02<22:14, 3.42it/s]
|
233 |
5%|▍ | 233/4790 [01:03<22:43, 3.34it/s]
|
234 |
5%|▍ | 234/4790 [01:03<22:02, 3.45it/s]
|
235 |
5%|▍ | 235/4790 [01:03<20:39, 3.67it/s]
|
236 |
5%|▍ | 236/4790 [01:04<23:49, 3.18it/s]
|
237 |
5%|▍ | 237/4790 [01:04<24:54, 3.05it/s]
|
238 |
5%|▍ | 238/4790 [01:04<24:56, 3.04it/s]
|
239 |
5%|▍ | 239/4790 [01:05<24:16, 3.12it/s]
|
240 |
5%|▌ | 240/4790 [01:05<22:37, 3.35it/s]
|
241 |
5%|▌ | 241/4790 [01:05<26:11, 2.89it/s]
|
242 |
5%|▌ | 242/4790 [01:06<23:40, 3.20it/s]
|
243 |
5%|▌ | 243/4790 [01:06<24:51, 3.05it/s]
|
244 |
5%|▌ | 244/4790 [01:06<24:47, 3.06it/s]
|
245 |
5%|▌ | 245/4790 [01:07<22:59, 3.29it/s]
|
246 |
5%|▌ | 246/4790 [01:07<22:32, 3.36it/s]
|
247 |
5%|▌ | 247/4790 [01:07<20:16, 3.73it/s]
|
248 |
5%|▌ | 248/4790 [01:07<19:43, 3.84it/s]
|
249 |
5%|▌ | 249/4790 [01:08<21:41, 3.49it/s]
|
250 |
5%|▌ | 250/4790 [01:08<25:08, 3.01it/s]
|
251 |
5%|▌ | 251/4790 [01:08<25:17, 2.99it/s]
|
252 |
5%|▌ | 252/4790 [01:09<22:38, 3.34it/s]
|
253 |
5%|▌ | 253/4790 [01:09<20:45, 3.64it/s]
|
254 |
5%|▌ | 254/4790 [01:09<19:55, 3.79it/s]
|
255 |
5%|▌ | 255/4790 [01:09<19:58, 3.78it/s]
|
256 |
5%|▌ | 256/4790 [01:10<20:54, 3.61it/s]
|
257 |
5%|▌ | 257/4790 [01:10<22:47, 3.32it/s]
|
258 |
5%|▌ | 258/4790 [01:10<20:47, 3.63it/s]
|
259 |
5%|▌ | 259/4790 [01:10<18:58, 3.98it/s]
|
260 |
5%|▌ | 260/4790 [01:11<21:14, 3.55it/s]
|
261 |
5%|▌ | 261/4790 [01:11<20:03, 3.76it/s]
|
262 |
5%|▌ | 262/4790 [01:11<21:05, 3.58it/s]
|
263 |
5%|▌ | 263/4790 [01:12<21:12, 3.56it/s]
|
264 |
6%|▌ | 264/4790 [01:12<20:51, 3.62it/s]
|
265 |
6%|▌ | 265/4790 [01:12<22:23, 3.37it/s]
|
266 |
6%|▌ | 266/4790 [01:13<21:56, 3.44it/s]
|
267 |
6%|▌ | 267/4790 [01:13<22:31, 3.35it/s]
|
268 |
6%|▌ | 268/4790 [01:13<21:57, 3.43it/s]
|
269 |
6%|▌ | 269/4790 [01:13<22:48, 3.30it/s]
|
270 |
6%|▌ | 270/4790 [01:14<22:38, 3.33it/s]
|
271 |
6%|▌ | 271/4790 [01:14<21:37, 3.48it/s]
|
272 |
6%|▌ | 272/4790 [01:14<19:41, 3.82it/s]
|
273 |
6%|▌ | 273/4790 [01:14<18:42, 4.02it/s]
|
274 |
6%|▌ | 274/4790 [01:15<18:50, 3.99it/s]
|
275 |
6%|▌ | 275/4790 [01:15<19:49, 3.79it/s]
|
276 |
6%|▌ | 276/4790 [01:15<17:32, 4.29it/s]
|
277 |
6%|▌ | 277/4790 [01:15<16:46, 4.48it/s]
|
278 |
6%|▌ | 278/4790 [01:16<16:39, 4.51it/s]
|
279 |
6%|▌ | 279/4790 [01:16<18:49, 3.99it/s]
|
280 |
6%|▌ | 280/4790 [01:16<17:38, 4.26it/s]
|
281 |
6%|▌ | 281/4790 [01:16<16:33, 4.54it/s]
|
282 |
6%|▌ | 282/4790 [01:17<20:05, 3.74it/s]
|
283 |
6%|▌ | 283/4790 [01:17<18:27, 4.07it/s]
|
284 |
6%|▌ | 284/4790 [01:17<18:32, 4.05it/s]
|
285 |
6%|▌ | 285/4790 [01:17<18:28, 4.07it/s]
|
286 |
6%|▌ | 286/4790 [01:18<18:14, 4.12it/s]
|
287 |
6%|▌ | 287/4790 [01:18<21:27, 3.50it/s]
|
288 |
6%|▌ | 288/4790 [01:18<21:52, 3.43it/s]
|
289 |
6%|▌ | 289/4790 [01:18<20:33, 3.65it/s]
|
290 |
6%|▌ | 290/4790 [01:19<21:24, 3.50it/s]
|
291 |
6%|▌ | 291/4790 [01:19<20:36, 3.64it/s]
|
292 |
6%|▌ | 292/4790 [01:19<19:57, 3.76it/s]
|
293 |
6%|▌ | 293/4790 [01:20<24:15, 3.09it/s]
|
294 |
6%|▌ | 294/4790 [01:20<22:18, 3.36it/s]
|
295 |
6%|▌ | 295/4790 [01:20<23:18, 3.21it/s]
|
296 |
6%|▌ | 296/4790 [01:21<25:14, 2.97it/s]
|
297 |
6%|▌ | 297/4790 [01:21<24:18, 3.08it/s]
|
298 |
6%|▌ | 298/4790 [01:21<21:32, 3.48it/s]
|
299 |
6%|▌ | 299/4790 [01:21<20:51, 3.59it/s]
|
300 |
6%|▋ | 300/4790 [01:22<19:20, 3.87it/s]
|
301 |
6%|▋ | 301/4790 [01:22<19:39, 3.81it/s]
|
302 |
6%|▋ | 302/4790 [01:22<19:31, 3.83it/s]
|
303 |
6%|▋ | 303/4790 [01:22<20:12, 3.70it/s]
|
304 |
6%|▋ | 304/4790 [01:23<19:28, 3.84it/s]
|
305 |
6%|▋ | 305/4790 [01:23<19:17, 3.88it/s]
|
306 |
6%|▋ | 306/4790 [01:23<17:51, 4.18it/s]
|
307 |
6%|▋ | 307/4790 [01:23<18:10, 4.11it/s]
|
308 |
6%|▋ | 308/4790 [01:24<23:32, 3.17it/s]
|
309 |
6%|▋ | 309/4790 [01:24<21:51, 3.42it/s]
|
310 |
6%|▋ | 310/4790 [01:24<20:53, 3.57it/s]
|
311 |
6%|▋ | 311/4790 [01:25<20:05, 3.72it/s]
|
312 |
7%|▋ | 312/4790 [01:25<19:17, 3.87it/s]
|
313 |
7%|▋ | 313/4790 [01:25<19:03, 3.91it/s]
|
314 |
7%|��� | 314/4790 [01:25<21:26, 3.48it/s]
|
315 |
7%|▋ | 315/4790 [01:26<20:37, 3.61it/s]
|
316 |
7%|▋ | 316/4790 [01:26<20:04, 3.71it/s]
|
317 |
7%|▋ | 317/4790 [01:26<19:26, 3.83it/s]
|
318 |
7%|▋ | 318/4790 [01:27<20:44, 3.59it/s]
|
319 |
7%|▋ | 319/4790 [01:27<19:54, 3.74it/s]
|
320 |
7%|▋ | 320/4790 [01:27<22:32, 3.30it/s]
|
321 |
7%|▋ | 321/4790 [01:27<21:02, 3.54it/s]
|
322 |
7%|▋ | 322/4790 [01:28<21:39, 3.44it/s]
|
323 |
7%|▋ | 323/4790 [01:28<21:36, 3.45it/s]
|
324 |
7%|▋ | 324/4790 [01:28<20:08, 3.70it/s]
|
325 |
7%|▋ | 325/4790 [01:29<20:12, 3.68it/s]
|
326 |
7%|▋ | 326/4790 [01:29<18:55, 3.93it/s]
|
327 |
7%|▋ | 327/4790 [01:29<18:47, 3.96it/s]
|
328 |
7%|▋ | 328/4790 [01:29<17:11, 4.33it/s]
|
329 |
7%|▋ | 329/4790 [01:29<19:41, 3.78it/s]
|
330 |
7%|▋ | 330/4790 [01:30<19:27, 3.82it/s]
|
331 |
7%|▋ | 331/4790 [01:30<19:14, 3.86it/s]
|
332 |
7%|▋ | 332/4790 [01:30<19:45, 3.76it/s]
|
333 |
7%|▋ | 333/4790 [01:31<19:15, 3.86it/s]
|
334 |
7%|▋ | 334/4790 [01:31<19:12, 3.86it/s]
|
335 |
7%|▋ | 335/4790 [01:31<19:52, 3.74it/s]
|
336 |
7%|▋ | 336/4790 [01:31<21:35, 3.44it/s]
|
337 |
7%|▋ | 337/4790 [01:32<25:21, 2.93it/s]
|
338 |
7%|▋ | 338/4790 [01:32<24:09, 3.07it/s]
|
339 |
7%|▋ | 339/4790 [01:32<21:21, 3.47it/s]
|
340 |
7%|▋ | 340/4790 [01:33<21:04, 3.52it/s]
|
341 |
7%|▋ | 341/4790 [01:33<21:03, 3.52it/s]
|
342 |
7%|▋ | 342/4790 [01:33<18:26, 4.02it/s]
|
343 |
7%|▋ | 343/4790 [01:33<17:48, 4.16it/s]
|
344 |
7%|▋ | 344/4790 [01:34<16:38, 4.45it/s]
|
345 |
7%|▋ | 345/4790 [01:34<18:20, 4.04it/s]
|
346 |
7%|▋ | 346/4790 [01:34<18:51, 3.93it/s]
|
347 |
7%|▋ | 347/4790 [01:34<18:24, 4.02it/s]
|
348 |
7%|▋ | 348/4790 [01:35<18:23, 4.02it/s]
|
349 |
7%|▋ | 349/4790 [01:35<19:05, 3.88it/s]
|
350 |
7%|▋ | 350/4790 [01:35<18:45, 3.94it/s]
|
351 |
7%|▋ | 351/4790 [01:35<19:40, 3.76it/s]
|
352 |
7%|▋ | 352/4790 [01:36<20:27, 3.62it/s]
|
353 |
7%|▋ | 353/4790 [01:36<20:13, 3.66it/s]
|
354 |
7%|▋ | 354/4790 [01:36<21:46, 3.39it/s]
|
355 |
7%|▋ | 355/4790 [01:37<20:23, 3.62it/s]
|
356 |
7%|▋ | 356/4790 [01:37<20:12, 3.66it/s]
|
357 |
7%|▋ | 357/4790 [01:37<20:34, 3.59it/s]
|
358 |
7%|▋ | 358/4790 [01:37<20:09, 3.66it/s]
|
359 |
7%|▋ | 359/4790 [01:38<21:14, 3.48it/s]
|
360 |
8%|▊ | 360/4790 [01:38<20:40, 3.57it/s]
|
361 |
8%|▊ | 361/4790 [01:38<19:59, 3.69it/s]
|
362 |
8%|▊ | 362/4790 [01:39<23:39, 3.12it/s]
|
363 |
8%|▊ | 363/4790 [01:39<23:06, 3.19it/s]
|
364 |
8%|▊ | 364/4790 [01:39<21:44, 3.39it/s]
|
365 |
8%|▊ | 365/4790 [01:39<20:51, 3.54it/s]
|
366 |
8%|▊ | 366/4790 [01:40<20:37, 3.57it/s]
|
367 |
8%|▊ | 367/4790 [01:40<20:49, 3.54it/s]
|
368 |
8%|▊ | 368/4790 [01:40<19:58, 3.69it/s]
|
369 |
8%|▊ | 369/4790 [01:41<23:59, 3.07it/s]
|
370 |
8%|▊ | 370/4790 [01:41<24:54, 2.96it/s]
|
371 |
8%|▊ | 371/4790 [01:41<23:32, 3.13it/s]
|
372 |
8%|▊ | 372/4790 [01:42<24:14, 3.04it/s]
|
373 |
8%|▊ | 373/4790 [01:42<21:57, 3.35it/s]
|
374 |
8%|▊ | 374/4790 [01:42<20:08, 3.65it/s]
|
375 |
8%|▊ | 375/4790 [01:43<23:55, 3.08it/s]
|
376 |
8%|▊ | 376/4790 [01:43<23:20, 3.15it/s]
|
377 |
8%|▊ | 377/4790 [01:43<20:48, 3.53it/s]
|
378 |
8%|▊ | 378/4790 [01:43<20:24, 3.60it/s]
|
379 |
8%|▊ | 379/4790 [01:44<19:31, 3.77it/s]
|
380 |
8%|▊ | 380/4790 [01:44<19:40, 3.74it/s]
|
381 |
8%|▊ | 381/4790 [01:44<18:52, 3.89it/s]
|
382 |
8%|▊ | 382/4790 [01:44<17:12, 4.27it/s]
|
383 |
8%|▊ | 383/4790 [01:44<16:23, 4.48it/s]
|
384 |
8%|▊ | 384/4790 [01:45<16:58, 4.32it/s]
|
385 |
8%|▊ | 385/4790 [01:45<19:00, 3.86it/s]
|
386 |
8%|▊ | 386/4790 [01:45<20:09, 3.64it/s]
|
387 |
8%|▊ | 387/4790 [01:46<21:31, 3.41it/s]
|
388 |
8%|▊ | 388/4790 [01:46<20:03, 3.66it/s]
|
389 |
8%|▊ | 389/4790 [01:46<22:50, 3.21it/s]
|
390 |
8%|▊ | 390/4790 [01:46<20:16, 3.62it/s]
|
391 |
8%|▊ | 391/4790 [01:47<21:09, 3.47it/s]
|
392 |
8%|▊ | 392/4790 [01:47<19:30, 3.76it/s]
|
393 |
8%|▊ | 393/4790 [01:47<17:51, 4.10it/s]
|
394 |
8%|▊ | 394/4790 [01:47<17:49, 4.11it/s]
|
395 |
8%|▊ | 395/4790 [01:48<18:08, 4.04it/s]
|
396 |
8%|▊ | 396/4790 [01:48<17:36, 4.16it/s]
|
397 |
8%|▊ | 397/4790 [01:48<19:35, 3.74it/s]
|
398 |
8%|▊ | 398/4790 [01:49<20:26, 3.58it/s]
|
399 |
8%|▊ | 399/4790 [01:49<20:14, 3.61it/s]
|
400 |
8%|▊ | 400/4790 [01:49<18:53, 3.87it/s]
|
401 |
8%|▊ | 401/4790 [01:49<19:57, 3.67it/s]
|
402 |
8%|▊ | 402/4790 [01:50<18:32, 3.94it/s]
|
403 |
8%|▊ | 403/4790 [01:50<18:04, 4.05it/s]
|
404 |
8%|▊ | 404/4790 [01:50<17:58, 4.07it/s]
|
405 |
8%|▊ | 405/4790 [01:50<18:34, 3.94it/s]
|
406 |
8%|▊ | 406/4790 [01:51<19:41, 3.71it/s]
|
407 |
8%|▊ | 407/4790 [01:51<18:06, 4.03it/s]
|
408 |
9%|▊ | 408/4790 [01:51<19:27, 3.75it/s]
|
409 |
9%|▊ | 409/4790 [01:51<18:26, 3.96it/s]
|
410 |
9%|▊ | 410/4790 [01:52<18:19, 3.98it/s]
|
411 |
9%|▊ | 411/4790 [01:52<19:04, 3.83it/s]
|
412 |
9%|▊ | 412/4790 [01:52<22:31, 3.24it/s]
|
413 |
9%|▊ | 413/4790 [01:53<22:04, 3.30it/s]
|
414 |
9%|▊ | 414/4790 [01:53<20:44, 3.52it/s]
|
415 |
9%|▊ | 415/4790 [01:53<19:50, 3.67it/s]
|
416 |
9%|▊ | 416/4790 [01:53<20:30, 3.55it/s]
|
417 |
9%|▊ | 417/4790 [01:54<19:17, 3.78it/s]
|
418 |
9%|▊ | 418/4790 [01:54<17:48, 4.09it/s]
|
419 |
9%|▊ | 419/4790 [01:54<17:43, 4.11it/s]
|
420 |
9%|▉ | 420/4790 [01:54<17:57, 4.06it/s]
|
421 |
9%|▉ | 421/4790 [01:55<18:55, 3.85it/s]
|
422 |
9%|▉ | 422/4790 [01:55<18:49, 3.87it/s]
|
423 |
9%|▉ | 423/4790 [01:55<18:09, 4.01it/s]
|
424 |
9%|▉ | 424/4790 [01:55<18:01, 4.04it/s]
|
425 |
9%|▉ | 425/4790 [01:56<18:29, 3.93it/s]
|
426 |
9%|▉ | 426/4790 [01:56<18:20, 3.97it/s]
|
427 |
9%|▉ | 427/4790 [01:56<17:21, 4.19it/s]
|
428 |
9%|▉ | 428/4790 [01:56<17:53, 4.06it/s]
|
429 |
9%|▉ | 429/4790 [01:57<17:32, 4.14it/s]
|
430 |
9%|▉ | 430/4790 [01:57<16:50, 4.32it/s]
|
431 |
9%|▉ | 431/4790 [01:57<16:49, 4.32it/s]
|
432 |
9%|▉ | 432/4790 [01:57<16:52, 4.30it/s]
|
433 |
9%|▉ | 433/4790 [01:57<16:16, 4.46it/s]
|
434 |
9%|▉ | 434/4790 [01:58<17:52, 4.06it/s]
|
435 |
9%|▉ | 435/4790 [01:58<17:23, 4.17it/s]
|
436 |
9%|▉ | 436/4790 [01:58<16:56, 4.28it/s]
|
437 |
9%|▉ | 437/4790 [01:58<19:06, 3.80it/s]
|
438 |
9%|▉ | 438/4790 [01:59<19:18, 3.76it/s]
|
439 |
9%|▉ | 439/4790 [01:59<18:51, 3.84it/s]
|
440 |
9%|▉ | 440/4790 [01:59<19:20, 3.75it/s]
|
441 |
9%|▉ | 441/4790 [02:00<20:58, 3.46it/s]
|
442 |
9%|▉ | 442/4790 [02:00<20:20, 3.56it/s]
|
443 |
9%|▉ | 443/4790 [02:00<20:12, 3.58it/s]
|
444 |
9%|▉ | 444/4790 [02:00<18:59, 3.81it/s]
|
445 |
9%|▉ | 445/4790 [02:01<17:37, 4.11it/s]
|
446 |
9%|▉ | 446/4790 [02:01<19:02, 3.80it/s]
|
447 |
9%|▉ | 447/4790 [02:01<17:38, 4.10it/s]
|
448 |
9%|▉ | 448/4790 [02:01<17:54, 4.04it/s]
|
449 |
9%|▉ | 449/4790 [02:02<16:45, 4.32it/s]
|
450 |
9%|▉ | 450/4790 [02:02<17:07, 4.22it/s]
|
451 |
9%|▉ | 451/4790 [02:02<16:06, 4.49it/s]
|
452 |
9%|▉ | 452/4790 [02:02<19:32, 3.70it/s]
|
453 |
9%|▉ | 453/4790 [02:03<19:30, 3.70it/s]
|
454 |
9%|▉ | 454/4790 [02:03<18:34, 3.89it/s]
|
455 |
9%|▉ | 455/4790 [02:03<17:23, 4.16it/s]
|
456 |
10%|▉ | 456/4790 [02:03<18:24, 3.92it/s]
|
457 |
10%|▉ | 457/4790 [02:04<25:31, 2.83it/s]
|
458 |
10%|▉ | 458/4790 [02:04<23:07, 3.12it/s]
|
459 |
10%|▉ | 459/4790 [02:05<23:20, 3.09it/s]
|
460 |
10%|▉ | 460/4790 [02:05<22:18, 3.24it/s]
|
461 |
10%|▉ | 461/4790 [02:05<21:41, 3.33it/s]
|
462 |
10%|▉ | 462/4790 [02:05<20:15, 3.56it/s]
|
463 |
10%|▉ | 463/4790 [02:06<24:21, 2.96it/s]
|
464 |
10%|▉ | 464/4790 [02:06<21:39, 3.33it/s]
|
465 |
10%|▉ | 465/4790 [02:06<19:06, 3.77it/s]
|
466 |
10%|▉ | 466/4790 [02:06<18:17, 3.94it/s]
|
467 |
10%|▉ | 467/4790 [02:07<18:49, 3.83it/s]
|
468 |
10%|▉ | 468/4790 [02:07<18:49, 3.83it/s]
|
469 |
10%|▉ | 469/4790 [02:07<18:00, 4.00it/s]
|
470 |
10%|▉ | 470/4790 [02:07<18:25, 3.91it/s]
|
471 |
10%|▉ | 471/4790 [02:08<20:39, 3.49it/s]
|
472 |
10%|▉ | 472/4790 [02:08<20:58, 3.43it/s]
|
473 |
10%|▉ | 473/4790 [02:08<20:46, 3.46it/s]
|
474 |
10%|▉ | 474/4790 [02:09<19:24, 3.71it/s]
|
475 |
10%|▉ | 475/4790 [02:09<17:54, 4.02it/s]
|
476 |
10%|▉ | 476/4790 [02:09<18:35, 3.87it/s]
|
477 |
10%|▉ | 477/4790 [02:09<17:33, 4.09it/s]
|
478 |
10%|▉ | 478/4790 [02:10<20:27, 3.51it/s]
|
479 |
10%|█ | 479/4790 [02:10<19:05, 3.76it/s][INFO|trainer.py:811] 2024-09-05 13:37:19,924 >> The following columns in the evaluation set don't have a corresponding argument in `BertForTokenClassification.forward` and have been ignored: ner_tags, id, tokens. If ner_tags, id, tokens are not expected by `BertForTokenClassification.forward`, you can safely ignore this message.
|
|
|
|
|
|
|
|
|
|
|
|
|
480 |
0%| | 0/850 [00:00<?, ?it/s][A
|
|
|
481 |
1%| | 9/850 [00:00<00:11, 75.89it/s][A
|
|
|
482 |
2%|▏ | 18/850 [00:00<00:10, 78.45it/s][A
|
|
|
483 |
3%|▎ | 27/850 [00:00<00:10, 80.37it/s][A
|
|
|
484 |
4%|▍ | 37/850 [00:00<00:09, 84.54it/s][A
|
|
|
485 |
5%|▌ | 46/850 [00:00<00:09, 85.60it/s][A
|
|
|
486 |
6%|▋ | 55/850 [00:00<00:10, 78.60it/s][A
|
|
|
487 |
8%|▊ | 64/850 [00:00<00:09, 79.44it/s][A
|
|
|
488 |
9%|▊ | 73/850 [00:00<00:10, 75.52it/s][A
|
|
|
489 |
10%|▉ | 81/850 [00:01<00:10, 76.28it/s][A
|
|
|
490 |
11%|█ | 90/850 [00:01<00:09, 80.04it/s][A
|
|
|
491 |
12%|█▏ | 99/850 [00:01<00:09, 82.32it/s][A
|
|
|
492 |
13%|█▎ | 109/850 [00:01<00:08, 84.86it/s][A
|
|
|
493 |
14%|█▍ | 118/850 [00:01<00:08, 85.25it/s][A
|
|
|
494 |
15%|█▍ | 127/850 [00:01<00:08, 86.48it/s][A
|
|
|
495 |
16%|█▌ | 136/850 [00:01<00:08, 85.42it/s][A
|
|
|
496 |
17%|█▋ | 145/850 [00:01<00:08, 81.53it/s][A
|
|
|
497 |
18%|█▊ | 154/850 [00:01<00:08, 82.60it/s][A
|
|
|
498 |
19%|█▉ | 163/850 [00:01<00:08, 84.65it/s][A
|
|
|
499 |
20%|██ | 172/850 [00:02<00:07, 85.43it/s][A
|
|
|
500 |
21%|██▏ | 181/850 [00:02<00:07, 85.66it/s][A
|
|
|
501 |
22%|██▏ | 190/850 [00:02<00:07, 84.23it/s][A
|
|
|
502 |
23%|██▎ | 199/850 [00:02<00:07, 85.01it/s][A
|
|
|
503 |
24%|██▍ | 208/850 [00:02<00:07, 83.44it/s][A
|
|
|
504 |
26%|██▌ | 217/850 [00:02<00:07, 81.88it/s][A
|
|
|
505 |
27%|██▋ | 227/850 [00:02<00:07, 84.16it/s][A
|
|
|
506 |
28%|██▊ | 237/850 [00:02<00:07, 86.15it/s][A
|
|
|
507 |
29%|██▉ | 246/850 [00:02<00:07, 84.46it/s][A
|
|
|
508 |
30%|███ | 256/850 [00:03<00:06, 88.24it/s][A
|
|
|
509 |
31%|███ | 265/850 [00:03<00:06, 87.70it/s][A
|
|
|
510 |
32%|███▏ | 275/850 [00:03<00:06, 88.16it/s][A
|
|
|
511 |
33%|███▎ | 284/850 [00:03<00:06, 87.65it/s][A
|
|
|
512 |
35%|███▍ | 294/850 [00:03<00:06, 88.09it/s][A
|
|
|
513 |
36%|███▌ | 303/850 [00:03<00:06, 86.09it/s][A
|
|
|
514 |
37%|███▋ | 313/850 [00:03<00:06, 87.89it/s][A
|
|
|
515 |
38%|███▊ | 322/850 [00:03<00:06, 87.79it/s][A
|
|
|
516 |
39%|███▉ | 331/850 [00:03<00:05, 87.25it/s][A
|
|
|
517 |
40%|████ | 340/850 [00:04<00:05, 87.67it/s][A
|
|
|
518 |
41%|████ | 349/850 [00:04<00:05, 86.98it/s][A
|
|
|
519 |
42%|████▏ | 358/850 [00:04<00:05, 85.62it/s][A
|
|
|
520 |
43%|████▎ | 367/850 [00:04<00:05, 85.83it/s][A
|
|
|
521 |
44%|████▍ | 376/850 [00:04<00:05, 84.60it/s][A
|
|
|
522 |
45%|████▌ | 385/850 [00:04<00:05, 82.20it/s][A
|
|
|
523 |
46%|████▋ | 394/850 [00:04<00:05, 80.28it/s][A
|
|
|
524 |
47%|████▋ | 403/850 [00:04<00:05, 81.93it/s][A
|
|
|
525 |
49%|████▊ | 413/850 [00:04<00:05, 85.88it/s][A
|
|
|
526 |
50%|████▉ | 423/850 [00:05<00:04, 87.54it/s][A
|
|
|
527 |
51%|█████ | 432/850 [00:05<00:04, 87.55it/s][A
|
|
|
528 |
52%|█████▏ | 441/850 [00:05<00:04, 86.85it/s][A
|
|
|
529 |
53%|█████▎ | 450/850 [00:05<00:04, 83.69it/s][A
|
|
|
530 |
54%|█████▍ | 460/850 [00:05<00:04, 86.80it/s][A
|
|
|
531 |
55%|█████▌ | 470/850 [00:05<00:04, 88.96it/s][A
|
|
|
532 |
56%|█████▋ | 480/850 [00:05<00:04, 90.23it/s][A
|
|
|
533 |
58%|█████▊ | 490/850 [00:05<00:04, 88.23it/s][A
|
|
|
534 |
59%|█████▉ | 500/850 [00:05<00:03, 89.90it/s][A
|
|
|
535 |
60%|██████ | 510/850 [00:05<00:03, 89.99it/s][A
|
|
|
536 |
61%|██████ | 520/850 [00:06<00:03, 90.30it/s][A
|
|
|
537 |
62%|██████▏ | 530/850 [00:06<00:03, 86.55it/s][A
|
|
|
538 |
63%|██████▎ | 539/850 [00:06<00:03, 85.36it/s][A
|
|
|
539 |
64%|██████▍ | 548/850 [00:06<00:03, 83.42it/s][A
|
|
|
540 |
66%|██████▌ | 557/850 [00:06<00:03, 83.02it/s][A
|
|
|
541 |
67%|██████▋ | 566/850 [00:06<00:03, 80.41it/s][A
|
|
|
542 |
68%|██████▊ | 575/850 [00:06<00:03, 82.97it/s][A
|
|
|
543 |
69%|██████▊ | 584/850 [00:06<00:03, 83.09it/s][A
|
|
|
544 |
70%|██████▉ | 593/850 [00:06<00:03, 84.13it/s][A
|
|
|
545 |
71%|███████ | 602/850 [00:07<00:02, 83.90it/s][A
|
|
|
546 |
72%|███████▏ | 611/850 [00:07<00:02, 84.78it/s][A
|
|
|
547 |
73%|███████▎ | 620/850 [00:07<00:02, 84.83it/s][A
|
|
|
548 |
74%|███████▍ | 629/850 [00:07<00:02, 84.00it/s][A
|
|
|
549 |
75%|███████▌ | 638/850 [00:07<00:02, 84.53it/s][A
|
|
|
550 |
76%|███████▌ | 647/850 [00:07<00:02, 85.90it/s][A
|
|
|
551 |
77%|███████▋ | 656/850 [00:07<00:02, 86.93it/s][A
|
|
|
552 |
78%|███████▊ | 666/850 [00:07<00:02, 88.25it/s][A
|
|
|
553 |
79%|███████▉ | 675/850 [00:07<00:02, 85.00it/s][A
|
|
|
554 |
80%|████████ | 684/850 [00:08<00:01, 85.36it/s][A
|
|
|
555 |
82%|████████▏ | 693/850 [00:08<00:01, 83.16it/s][A
|
|
|
556 |
83%|████████▎ | 702/850 [00:08<00:01, 83.49it/s][A
|
|
|
557 |
84%|████████▎ | 711/850 [00:08<00:01, 82.74it/s][A
|
|
|
558 |
85%|████████▍ | 720/850 [00:08<00:01, 83.13it/s][A
|
|
|
559 |
86%|████████▌ | 729/850 [00:08<00:01, 80.00it/s][A
|
|
|
560 |
87%|████████▋ | 738/850 [00:08<00:01, 80.48it/s][A
|
|
|
561 |
88%|████████▊ | 747/850 [00:08<00:01, 80.29it/s][A
|
|
|
562 |
89%|████████▉ | 756/850 [00:08<00:01, 80.87it/s][A
|
|
|
563 |
90%|█████████ | 765/850 [00:09<00:01, 82.87it/s][A
|
|
|
564 |
91%|█████████ | 774/850 [00:09<00:00, 82.26it/s][A
|
|
|
565 |
92%|█████████▏| 783/850 [00:09<00:00, 80.12it/s][A
|
|
|
566 |
93%|█████████▎| 792/850 [00:09<00:00, 79.96it/s][A
|
|
|
567 |
94%|█████████▍| 802/850 [00:09<00:00, 83.67it/s][A
|
|
|
568 |
95%|█████████▌| 811/850 [00:09<00:00, 81.61it/s][A
|
|
|
569 |
97%|█████████▋| 821/850 [00:09<00:00, 85.11it/s][A
|
|
|
570 |
98%|█████████▊| 830/850 [00:09<00:00, 84.40it/s][A
|
|
|
571 |
99%|█████████▊| 839/850 [00:09<00:00, 84.53it/s][A
|
|
|
572 |
|
|
|
573 |
|
574 |
10%|█ | 479/4790 [02:24<19:05, 3.76it/s]
|
|
|
|
|
575 |
[A[INFO|trainer.py:3503] 2024-09-05 13:37:33,956 >> Saving model checkpoint to /content/dissertation/scripts/ner/output/checkpoint-479
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
576 |
10%|█ | 480/4790 [02:27<6:21:25, 5.31s/it]
|
577 |
10%|█ | 481/4790 [02:27<4:31:30, 3.78s/it]
|
578 |
10%|█ | 482/4790 [02:27<3:16:31, 2.74s/it]
|
579 |
10%|█ | 483/4790 [02:28<2:25:49, 2.03s/it]
|
580 |
10%|█ | 484/4790 [02:28<1:46:37, 1.49s/it]
|
581 |
10%|█ | 485/4790 [02:28<1:22:39, 1.15s/it]
|
582 |
10%|█ | 486/4790 [02:29<1:02:21, 1.15it/s]
|
583 |
10%|█ | 487/4790 [02:29<50:31, 1.42it/s]
|
584 |
10%|█ | 488/4790 [02:29<41:55, 1.71it/s]
|
585 |
10%|█ | 489/4790 [02:29<33:13, 2.16it/s]
|
586 |
10%|█ | 490/4790 [02:30<29:22, 2.44it/s]
|
587 |
10%|█ | 491/4790 [02:30<24:58, 2.87it/s]
|
588 |
10%|█ | 492/4790 [02:30<22:15, 3.22it/s]
|
589 |
10%|█ | 493/4790 [02:30<20:11, 3.55it/s]
|
590 |
10%|█ | 494/4790 [02:31<20:24, 3.51it/s]
|
591 |
10%|█ | 495/4790 [02:31<19:16, 3.71it/s]
|
592 |
10%|█ | 496/4790 [02:31<19:33, 3.66it/s]
|
593 |
10%|█ | 497/4790 [02:32<21:30, 3.33it/s]
|
594 |
10%|█ | 498/4790 [02:32<22:35, 3.17it/s]
|
595 |
10%|█ | 499/4790 [02:32<20:38, 3.46it/s]
|
596 |
10%|█ | 500/4790 [02:32<19:03, 3.75it/s]
|
597 |
|
598 |
10%|█ | 500/4790 [02:32<19:03, 3.75it/s]
|
599 |
10%|█ | 501/4790 [02:33<19:03, 3.75it/s]
|
600 |
10%|█ | 502/4790 [02:33<19:37, 3.64it/s]
|
601 |
11%|█ | 503/4790 [02:33<18:13, 3.92it/s]
|
602 |
11%|█ | 504/4790 [02:34<21:59, 3.25it/s]
|
603 |
11%|█ | 505/4790 [02:34<20:52, 3.42it/s]
|
604 |
11%|█ | 506/4790 [02:34<20:21, 3.51it/s]
|
605 |
11%|█ | 507/4790 [02:34<18:42, 3.82it/s]
|
606 |
11%|█ | 508/4790 [02:35<22:26, 3.18it/s]
|
607 |
11%|█ | 509/4790 [02:35<22:30, 3.17it/s]
|
608 |
11%|█ | 510/4790 [02:35<21:05, 3.38it/s]
|
609 |
11%|█ | 511/4790 [02:36<19:19, 3.69it/s]
|
610 |
11%|█ | 512/4790 [02:36<19:44, 3.61it/s]
|
611 |
11%|█ | 513/4790 [02:36<20:22, 3.50it/s]
|
612 |
11%|█ | 514/4790 [02:36<19:52, 3.59it/s]
|
613 |
11%|█ | 515/4790 [02:37<21:09, 3.37it/s]
|
614 |
11%|█ | 516/4790 [02:37<20:38, 3.45it/s]
|
615 |
11%|█ | 517/4790 [02:37<20:57, 3.40it/s]
|
616 |
11%|█ | 518/4790 [02:38<19:47, 3.60it/s]
|
617 |
11%|█ | 519/4790 [02:38<18:21, 3.88it/s]
|
|
|
1 |
+
2024-09-05 13:34:48.258223: I tensorflow/core/util/port.cc:153] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
|
2 |
+
2024-09-05 13:34:48.275126: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:485] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered
|
3 |
+
2024-09-05 13:34:48.295825: E external/local_xla/xla/stream_executor/cuda/cuda_dnn.cc:8454] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered
|
4 |
+
2024-09-05 13:34:48.302058: E external/local_xla/xla/stream_executor/cuda/cuda_blas.cc:1452] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered
|
5 |
+
2024-09-05 13:34:48.316617: I tensorflow/core/platform/cpu_feature_guard.cc:210] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.
|
6 |
+
To enable the following instructions: AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.
|
7 |
+
2024-09-05 13:34:49.554072: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT
|
8 |
+
/usr/local/lib/python3.10/dist-packages/transformers/training_args.py:1525: FutureWarning: `evaluation_strategy` is deprecated and will be removed in version 4.46 of 🤗 Transformers. Use `eval_strategy` instead
|
9 |
+
warnings.warn(
|
10 |
+
09/05/2024 13:34:51 - WARNING - __main__ - Process rank: 0, device: cuda:0, n_gpu: 1distributed training: True, 16-bits training: False
|
11 |
+
09/05/2024 13:34:51 - INFO - __main__ - Training/evaluation parameters TrainingArguments(
|
12 |
+
_n_gpu=1,
|
13 |
+
accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False},
|
14 |
+
adafactor=False,
|
15 |
+
adam_beta1=0.9,
|
16 |
+
adam_beta2=0.999,
|
17 |
+
adam_epsilon=1e-08,
|
18 |
+
auto_find_batch_size=False,
|
19 |
+
batch_eval_metrics=False,
|
20 |
+
bf16=False,
|
21 |
+
bf16_full_eval=False,
|
22 |
+
data_seed=None,
|
23 |
+
dataloader_drop_last=False,
|
24 |
+
dataloader_num_workers=0,
|
25 |
+
dataloader_persistent_workers=False,
|
26 |
+
dataloader_pin_memory=True,
|
27 |
+
dataloader_prefetch_factor=None,
|
28 |
+
ddp_backend=None,
|
29 |
+
ddp_broadcast_buffers=None,
|
30 |
+
ddp_bucket_cap_mb=None,
|
31 |
+
ddp_find_unused_parameters=None,
|
32 |
+
ddp_timeout=1800,
|
33 |
+
debug=[],
|
34 |
+
deepspeed=None,
|
35 |
+
disable_tqdm=False,
|
36 |
+
dispatch_batches=None,
|
37 |
+
do_eval=True,
|
38 |
+
do_predict=True,
|
39 |
+
do_train=True,
|
40 |
+
eval_accumulation_steps=None,
|
41 |
+
eval_delay=0,
|
42 |
+
eval_do_concat_batches=True,
|
43 |
+
eval_on_start=False,
|
44 |
+
eval_steps=None,
|
45 |
+
eval_strategy=epoch,
|
46 |
+
eval_use_gather_object=False,
|
47 |
+
evaluation_strategy=epoch,
|
48 |
+
fp16=False,
|
49 |
+
fp16_backend=auto,
|
50 |
+
fp16_full_eval=False,
|
51 |
+
fp16_opt_level=O1,
|
52 |
+
fsdp=[],
|
53 |
+
fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False},
|
54 |
+
fsdp_min_num_params=0,
|
55 |
+
fsdp_transformer_layer_cls_to_wrap=None,
|
56 |
+
full_determinism=False,
|
57 |
+
gradient_accumulation_steps=2,
|
58 |
+
gradient_checkpointing=False,
|
59 |
+
gradient_checkpointing_kwargs=None,
|
60 |
+
greater_is_better=True,
|
61 |
+
group_by_length=False,
|
62 |
+
half_precision_backend=auto,
|
63 |
+
hub_always_push=False,
|
64 |
+
hub_model_id=None,
|
65 |
+
hub_private_repo=False,
|
66 |
+
hub_strategy=every_save,
|
67 |
+
hub_token=<HUB_TOKEN>,
|
68 |
+
ignore_data_skip=False,
|
69 |
+
include_inputs_for_metrics=False,
|
70 |
+
include_num_input_tokens_seen=False,
|
71 |
+
include_tokens_per_second=False,
|
72 |
+
jit_mode_eval=False,
|
73 |
+
label_names=None,
|
74 |
+
label_smoothing_factor=0.0,
|
75 |
+
learning_rate=5e-05,
|
76 |
+
length_column_name=length,
|
77 |
+
load_best_model_at_end=True,
|
78 |
+
local_rank=0,
|
79 |
+
log_level=passive,
|
80 |
+
log_level_replica=warning,
|
81 |
+
log_on_each_node=True,
|
82 |
+
logging_dir=/content/dissertation/scripts/ner/output/tb,
|
83 |
+
logging_first_step=False,
|
84 |
+
logging_nan_inf_filter=True,
|
85 |
+
logging_steps=500,
|
86 |
+
logging_strategy=steps,
|
87 |
+
lr_scheduler_kwargs={},
|
88 |
+
lr_scheduler_type=linear,
|
89 |
+
max_grad_norm=1.0,
|
90 |
+
max_steps=-1,
|
91 |
+
metric_for_best_model=f1,
|
92 |
+
mp_parameters=,
|
93 |
+
neftune_noise_alpha=None,
|
94 |
+
no_cuda=False,
|
95 |
+
num_train_epochs=10.0,
|
96 |
+
optim=adamw_torch,
|
97 |
+
optim_args=None,
|
98 |
+
optim_target_modules=None,
|
99 |
+
output_dir=/content/dissertation/scripts/ner/output,
|
100 |
+
overwrite_output_dir=True,
|
101 |
+
past_index=-1,
|
102 |
+
per_device_eval_batch_size=8,
|
103 |
+
per_device_train_batch_size=32,
|
104 |
+
prediction_loss_only=False,
|
105 |
+
push_to_hub=True,
|
106 |
+
push_to_hub_model_id=None,
|
107 |
+
push_to_hub_organization=None,
|
108 |
+
push_to_hub_token=<PUSH_TO_HUB_TOKEN>,
|
109 |
+
ray_scope=last,
|
110 |
+
remove_unused_columns=True,
|
111 |
+
report_to=['tensorboard'],
|
112 |
+
restore_callback_states_from_checkpoint=False,
|
113 |
+
resume_from_checkpoint=None,
|
114 |
+
run_name=/content/dissertation/scripts/ner/output,
|
115 |
+
save_on_each_node=False,
|
116 |
+
save_only_model=False,
|
117 |
+
save_safetensors=True,
|
118 |
+
save_steps=500,
|
119 |
+
save_strategy=epoch,
|
120 |
+
save_total_limit=None,
|
121 |
+
seed=42,
|
122 |
+
skip_memory_metrics=True,
|
123 |
+
split_batches=None,
|
124 |
+
tf32=None,
|
125 |
+
torch_compile=False,
|
126 |
+
torch_compile_backend=None,
|
127 |
+
torch_compile_mode=None,
|
128 |
+
torch_empty_cache_steps=None,
|
129 |
+
torchdynamo=None,
|
130 |
+
tpu_metrics_debug=False,
|
131 |
+
tpu_num_cores=None,
|
132 |
+
use_cpu=False,
|
133 |
+
use_ipex=False,
|
134 |
+
use_legacy_prediction_loop=False,
|
135 |
+
use_mps_device=False,
|
136 |
+
warmup_ratio=0.0,
|
137 |
+
warmup_steps=0,
|
138 |
+
weight_decay=0.0,
|
139 |
+
)
|
140 |
+
|
141 |
+
|
142 |
+
|
143 |
+
|
144 |
+
|
145 |
+
|
146 |
+
|
147 |
+
[INFO|configuration_utils.py:733] 2024-09-05 13:35:02,046 >> loading configuration file config.json from cache at /root/.cache/huggingface/hub/models--IVN-RIN--bioBIT/snapshots/83755ed79ee254c11854e9f54a53679557271018/config.json
|
148 |
+
[INFO|configuration_utils.py:800] 2024-09-05 13:35:02,050 >> Model config BertConfig {
|
149 |
+
"_name_or_path": "IVN-RIN/bioBIT",
|
150 |
+
"architectures": [
|
151 |
+
"BertForMaskedLM"
|
152 |
+
],
|
153 |
+
"attention_probs_dropout_prob": 0.1,
|
154 |
+
"classifier_dropout": null,
|
155 |
+
"finetuning_task": "ner",
|
156 |
+
"hidden_act": "gelu",
|
157 |
+
"hidden_dropout_prob": 0.1,
|
158 |
+
"hidden_size": 768,
|
159 |
+
"id2label": {
|
160 |
+
"0": "O",
|
161 |
+
"1": "B-FARMACO",
|
162 |
+
"2": "I-FARMACO"
|
163 |
+
},
|
164 |
+
"initializer_range": 0.02,
|
165 |
+
"intermediate_size": 3072,
|
166 |
+
"label2id": {
|
167 |
+
"B-FARMACO": 1,
|
168 |
+
"I-FARMACO": 2,
|
169 |
+
"O": 0
|
170 |
+
},
|
171 |
+
"layer_norm_eps": 1e-12,
|
172 |
+
"max_position_embeddings": 512,
|
173 |
+
"model_type": "bert",
|
174 |
+
"num_attention_heads": 12,
|
175 |
+
"num_hidden_layers": 12,
|
176 |
+
"pad_token_id": 0,
|
177 |
+
"position_embedding_type": "absolute",
|
178 |
+
"torch_dtype": "float32",
|
179 |
+
"transformers_version": "4.44.2",
|
180 |
+
"type_vocab_size": 2,
|
181 |
+
"use_cache": true,
|
182 |
+
"vocab_size": 31102
|
183 |
+
}
|
184 |
+
|
185 |
+
[INFO|tokenization_utils_base.py:2269] 2024-09-05 13:35:02,109 >> loading file vocab.txt from cache at /root/.cache/huggingface/hub/models--IVN-RIN--bioBIT/snapshots/83755ed79ee254c11854e9f54a53679557271018/vocab.txt
|
186 |
+
[INFO|tokenization_utils_base.py:2269] 2024-09-05 13:35:02,109 >> loading file tokenizer.json from cache at /root/.cache/huggingface/hub/models--IVN-RIN--bioBIT/snapshots/83755ed79ee254c11854e9f54a53679557271018/tokenizer.json
|
187 |
+
[INFO|tokenization_utils_base.py:2269] 2024-09-05 13:35:02,109 >> loading file added_tokens.json from cache at None
|
188 |
+
[INFO|tokenization_utils_base.py:2269] 2024-09-05 13:35:02,109 >> loading file special_tokens_map.json from cache at /root/.cache/huggingface/hub/models--IVN-RIN--bioBIT/snapshots/83755ed79ee254c11854e9f54a53679557271018/special_tokens_map.json
|
189 |
+
[INFO|tokenization_utils_base.py:2269] 2024-09-05 13:35:02,109 >> loading file tokenizer_config.json from cache at /root/.cache/huggingface/hub/models--IVN-RIN--bioBIT/snapshots/83755ed79ee254c11854e9f54a53679557271018/tokenizer_config.json
|
190 |
+
/usr/local/lib/python3.10/dist-packages/transformers/tokenization_utils_base.py:1601: FutureWarning: `clean_up_tokenization_spaces` was not set. It will be set to `True` by default. This behavior will be depracted in transformers v4.45, and will be then set to `False` by default. For more details check this issue: https://github.com/huggingface/transformers/issues/31884
|
191 |
+
warnings.warn(
|
192 |
+
[INFO|modeling_utils.py:3678] 2024-09-05 13:35:02,174 >> loading weights file model.safetensors from cache at /root/.cache/huggingface/hub/models--IVN-RIN--bioBIT/snapshots/83755ed79ee254c11854e9f54a53679557271018/model.safetensors
|
193 |
+
[INFO|modeling_utils.py:4497] 2024-09-05 13:35:02,231 >> Some weights of the model checkpoint at IVN-RIN/bioBIT were not used when initializing BertForTokenClassification: ['cls.predictions.bias', 'cls.predictions.transform.LayerNorm.bias', 'cls.predictions.transform.LayerNorm.weight', 'cls.predictions.transform.dense.bias', 'cls.predictions.transform.dense.weight']
|
194 |
+
- This IS expected if you are initializing BertForTokenClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).
|
195 |
+
- This IS NOT expected if you are initializing BertForTokenClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).
|
196 |
+
[WARNING|modeling_utils.py:4509] 2024-09-05 13:35:02,231 >> Some weights of BertForTokenClassification were not initialized from the model checkpoint at IVN-RIN/bioBIT and are newly initialized: ['classifier.bias', 'classifier.weight']
|
197 |
+
You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
|
198 |
+
|
199 |
+
|
200 |
+
|
201 |
+
/content/dissertation/scripts/ner/run_ner_train.py:397: FutureWarning: load_metric is deprecated and will be removed in the next major version of datasets. Use 'evaluate.load' instead, from the new library 🤗 Evaluate: https://huggingface.co/docs/evaluate
|
202 |
+
metric = load_metric("seqeval", trust_remote_code=True)
|
203 |
+
[INFO|trainer.py:811] 2024-09-05 13:35:08,966 >> The following columns in the training set don't have a corresponding argument in `BertForTokenClassification.forward` and have been ignored: ner_tags, id, tokens. If ner_tags, id, tokens are not expected by `BertForTokenClassification.forward`, you can safely ignore this message.
|
204 |
+
[INFO|trainer.py:2134] 2024-09-05 13:35:09,528 >> ***** Running training *****
|
205 |
+
[INFO|trainer.py:2135] 2024-09-05 13:35:09,528 >> Num examples = 30,642
|
206 |
+
[INFO|trainer.py:2136] 2024-09-05 13:35:09,528 >> Num Epochs = 10
|
207 |
+
[INFO|trainer.py:2137] 2024-09-05 13:35:09,528 >> Instantaneous batch size per device = 32
|
208 |
+
[INFO|trainer.py:2140] 2024-09-05 13:35:09,528 >> Total train batch size (w. parallel, distributed & accumulation) = 64
|
209 |
+
[INFO|trainer.py:2141] 2024-09-05 13:35:09,528 >> Gradient Accumulation steps = 2
|
210 |
+
[INFO|trainer.py:2142] 2024-09-05 13:35:09,528 >> Total optimization steps = 4,790
|
211 |
+
[INFO|trainer.py:2143] 2024-09-05 13:35:09,529 >> Number of trainable parameters = 109,339,395
|
212 |
+
|
213 |
0%| | 0/4790 [00:00<?, ?it/s]
|
214 |
0%| | 1/4790 [00:01<1:20:56, 1.01s/it]
|
215 |
0%| | 2/4790 [00:01<50:37, 1.58it/s]
|
216 |
0%| | 3/4790 [00:01<37:18, 2.14it/s]
|
217 |
0%| | 4/4790 [00:01<29:46, 2.68it/s]
|
218 |
0%| | 5/4790 [00:02<25:48, 3.09it/s]
|
219 |
0%| | 6/4790 [00:02<26:14, 3.04it/s]
|
220 |
0%| | 7/4790 [00:02<24:55, 3.20it/s]
|
221 |
0%| | 8/4790 [00:02<22:17, 3.57it/s]
|
222 |
0%| | 9/4790 [00:03<21:39, 3.68it/s]
|
223 |
0%| | 10/4790 [00:03<22:52, 3.48it/s]
|
224 |
0%| | 11/4790 [00:03<21:15, 3.75it/s]
|
225 |
0%| | 12/4790 [00:04<22:03, 3.61it/s]
|
226 |
0%| | 13/4790 [00:04<20:44, 3.84it/s]
|
227 |
0%| | 14/4790 [00:04<19:51, 4.01it/s]
|
228 |
0%| | 15/4790 [00:04<18:24, 4.32it/s]
|
229 |
0%| | 16/4790 [00:04<18:34, 4.28it/s]
|
230 |
0%| | 17/4790 [00:05<18:30, 4.30it/s]
|
231 |
0%| | 18/4790 [00:05<18:13, 4.37it/s]
|
232 |
0%| | 19/4790 [00:05<20:34, 3.86it/s]
|
233 |
0%| | 20/4790 [00:05<19:30, 4.07it/s]
|
234 |
0%| | 21/4790 [00:06<19:47, 4.02it/s]
|
235 |
0%| | 22/4790 [00:06<19:42, 4.03it/s]
|
236 |
0%| | 23/4790 [00:06<19:29, 4.08it/s]
|
237 |
1%| | 24/4790 [00:06<20:18, 3.91it/s]
|
238 |
1%| | 25/4790 [00:07<20:17, 3.91it/s]
|
239 |
1%| | 26/4790 [00:07<19:08, 4.15it/s]
|
240 |
1%| | 27/4790 [00:07<18:37, 4.26it/s]
|
241 |
1%| | 28/4790 [00:07<20:30, 3.87it/s]
|
242 |
1%| | 29/4790 [00:08<20:31, 3.86it/s]
|
243 |
1%| | 30/4790 [00:08<21:02, 3.77it/s]
|
244 |
1%| | 31/4790 [00:08<20:09, 3.93it/s]
|
245 |
1%| | 32/4790 [00:09<22:20, 3.55it/s]
|
246 |
1%| | 33/4790 [00:09<20:31, 3.86it/s]
|
247 |
1%| | 34/4790 [00:09<21:36, 3.67it/s]
|
248 |
1%| | 35/4790 [00:09<22:11, 3.57it/s]
|
249 |
1%| | 36/4790 [00:10<20:46, 3.81it/s]
|
250 |
1%| | 37/4790 [00:10<23:52, 3.32it/s]
|
251 |
1%| | 38/4790 [00:10<21:50, 3.63it/s]
|
252 |
1%| | 39/4790 [00:10<22:49, 3.47it/s]
|
253 |
1%| | 40/4790 [00:11<23:36, 3.35it/s]
|
254 |
1%| | 41/4790 [00:11<21:06, 3.75it/s]
|
255 |
1%| | 42/4790 [00:11<20:37, 3.84it/s]
|
256 |
1%| | 43/4790 [00:12<20:36, 3.84it/s]
|
257 |
1%| | 44/4790 [00:12<30:21, 2.61it/s]
|
258 |
1%| | 45/4790 [00:12<26:51, 2.94it/s]
|
259 |
1%| | 46/4790 [00:13<24:36, 3.21it/s]
|
260 |
1%| | 47/4790 [00:13<26:25, 2.99it/s]
|
261 |
1%| | 48/4790 [00:13<24:41, 3.20it/s]
|
262 |
1%| | 49/4790 [00:14<23:30, 3.36it/s]
|
263 |
1%| | 50/4790 [00:14<23:01, 3.43it/s]
|
264 |
1%| | 51/4790 [00:14<22:17, 3.54it/s]
|
265 |
1%| | 52/4790 [00:14<21:00, 3.76it/s]
|
266 |
1%| | 53/4790 [00:15<19:53, 3.97it/s]
|
267 |
1%| | 54/4790 [00:15<19:08, 4.12it/s]
|
268 |
1%| | 55/4790 [00:15<21:09, 3.73it/s]
|
269 |
1%| | 56/4790 [00:15<19:04, 4.14it/s]
|
270 |
1%| | 57/4790 [00:16<20:34, 3.84it/s]
|
271 |
1%| | 58/4790 [00:16<20:14, 3.90it/s]
|
272 |
1%| | 59/4790 [00:16<19:47, 3.98it/s]
|
273 |
1%|▏ | 60/4790 [00:16<22:20, 3.53it/s]
|
274 |
1%|▏ | 61/4790 [00:17<21:23, 3.68it/s]
|
275 |
1%|▏ | 62/4790 [00:17<21:38, 3.64it/s]
|
276 |
1%|▏ | 63/4790 [00:17<22:00, 3.58it/s]
|
277 |
1%|▏ | 64/4790 [00:18<21:29, 3.67it/s]
|
278 |
1%|▏ | 65/4790 [00:18<21:47, 3.61it/s]
|
279 |
1%|▏ | 66/4790 [00:18<20:36, 3.82it/s]
|
280 |
1%|▏ | 67/4790 [00:19<27:23, 2.87it/s]
|
281 |
1%|▏ | 68/4790 [00:19<26:32, 2.97it/s]
|
282 |
1%|▏ | 69/4790 [00:19<24:31, 3.21it/s]
|
283 |
1%|▏ | 70/4790 [00:19<23:00, 3.42it/s]
|
284 |
1%|▏ | 71/4790 [00:20<23:36, 3.33it/s]
|
285 |
2%|▏ | 72/4790 [00:20<22:01, 3.57it/s]
|
286 |
2%|▏ | 73/4790 [00:20<20:12, 3.89it/s]
|
287 |
2%|▏ | 74/4790 [00:20<18:49, 4.17it/s]
|
288 |
2%|▏ | 75/4790 [00:21<20:11, 3.89it/s]
|
289 |
2%|▏ | 76/4790 [00:21<19:23, 4.05it/s]
|
290 |
2%|▏ | 77/4790 [00:21<21:03, 3.73it/s]
|
291 |
2%|▏ | 78/4790 [00:21<20:42, 3.79it/s]
|
292 |
2%|▏ | 79/4790 [00:22<20:11, 3.89it/s]
|
293 |
2%|▏ | 80/4790 [00:22<20:50, 3.77it/s]
|
294 |
2%|▏ | 81/4790 [00:22<19:14, 4.08it/s]
|
295 |
2%|▏ | 82/4790 [00:22<21:12, 3.70it/s]
|
296 |
2%|▏ | 83/4790 [00:23<20:43, 3.78it/s]
|
297 |
2%|▏ | 84/4790 [00:23<21:25, 3.66it/s]
|
298 |
2%|▏ | 85/4790 [00:23<22:19, 3.51it/s]
|
299 |
2%|▏ | 86/4790 [00:24<21:02, 3.72it/s]
|
300 |
2%|▏ | 87/4790 [00:24<19:44, 3.97it/s]
|
301 |
2%|▏ | 88/4790 [00:24<18:39, 4.20it/s]
|
302 |
2%|▏ | 89/4790 [00:24<19:58, 3.92it/s]
|
303 |
2%|▏ | 90/4790 [00:25<20:11, 3.88it/s]
|
304 |
2%|▏ | 91/4790 [00:25<22:09, 3.53it/s]
|
305 |
2%|▏ | 92/4790 [00:25<21:43, 3.60it/s]
|
306 |
2%|▏ | 93/4790 [00:25<20:35, 3.80it/s]
|
307 |
2%|▏ | 94/4790 [00:26<20:45, 3.77it/s]
|
308 |
2%|▏ | 95/4790 [00:26<18:51, 4.15it/s]
|
309 |
2%|▏ | 96/4790 [00:26<23:08, 3.38it/s]
|
310 |
2%|▏ | 97/4790 [00:26<21:22, 3.66it/s]
|
311 |
2%|▏ | 98/4790 [00:27<21:11, 3.69it/s]
|
312 |
2%|▏ | 99/4790 [00:27<23:06, 3.38it/s]
|
313 |
2%|▏ | 100/4790 [00:27<22:34, 3.46it/s]
|
314 |
2%|▏ | 101/4790 [00:28<22:19, 3.50it/s]
|
315 |
2%|▏ | 102/4790 [00:28<22:22, 3.49it/s]
|
316 |
2%|▏ | 103/4790 [00:28<21:22, 3.65it/s]
|
317 |
2%|▏ | 104/4790 [00:28<20:50, 3.75it/s]
|
318 |
2%|▏ | 105/4790 [00:29<19:16, 4.05it/s]
|
319 |
2%|▏ | 106/4790 [00:29<19:27, 4.01it/s]
|
320 |
2%|▏ | 107/4790 [00:29<20:03, 3.89it/s]
|
321 |
2%|▏ | 108/4790 [00:29<21:03, 3.70it/s]
|
322 |
2%|▏ | 109/4790 [00:30<19:57, 3.91it/s]
|
323 |
2%|▏ | 110/4790 [00:30<18:51, 4.14it/s]
|
324 |
2%|▏ | 111/4790 [00:30<19:09, 4.07it/s]
|
325 |
2%|▏ | 112/4790 [00:30<19:05, 4.08it/s]
|
326 |
2%|▏ | 113/4790 [00:31<18:14, 4.27it/s]
|
327 |
2%|▏ | 114/4790 [00:31<18:41, 4.17it/s]
|
328 |
2%|▏ | 115/4790 [00:31<17:37, 4.42it/s]
|
329 |
2%|▏ | 116/4790 [00:31<18:21, 4.24it/s]
|
330 |
2%|▏ | 117/4790 [00:32<20:53, 3.73it/s]
|
331 |
2%|▏ | 118/4790 [00:32<20:04, 3.88it/s]
|
332 |
2%|▏ | 119/4790 [00:32<21:01, 3.70it/s]
|
333 |
3%|▎ | 120/4790 [00:32<19:06, 4.07it/s]
|
334 |
3%|▎ | 121/4790 [00:33<20:35, 3.78it/s]
|
335 |
3%|▎ | 122/4790 [00:33<21:02, 3.70it/s]
|
336 |
3%|▎ | 123/4790 [00:33<24:04, 3.23it/s]
|
337 |
3%|▎ | 124/4790 [00:34<21:34, 3.60it/s]
|
338 |
3%|▎ | 125/4790 [00:34<21:45, 3.57it/s]
|
339 |
3%|▎ | 126/4790 [00:34<21:13, 3.66it/s]
|
340 |
3%|▎ | 127/4790 [00:34<22:31, 3.45it/s]
|
341 |
3%|▎ | 128/4790 [00:35<21:58, 3.54it/s]
|
342 |
3%|▎ | 129/4790 [00:35<21:51, 3.55it/s]
|
343 |
3%|▎ | 130/4790 [00:35<22:45, 3.41it/s]
|
344 |
3%|▎ | 131/4790 [00:36<21:18, 3.64it/s]
|
345 |
3%|▎ | 132/4790 [00:36<20:34, 3.77it/s]
|
346 |
3%|▎ | 133/4790 [00:36<20:01, 3.88it/s]
|
347 |
3%|▎ | 134/4790 [00:36<22:14, 3.49it/s]
|
348 |
3%|▎ | 135/4790 [00:37<21:41, 3.58it/s]
|
349 |
3%|▎ | 136/4790 [00:37<25:05, 3.09it/s]
|
350 |
3%|▎ | 137/4790 [00:37<23:27, 3.31it/s]
|
351 |
3%|▎ | 138/4790 [00:38<24:07, 3.21it/s]
|
352 |
3%|▎ | 139/4790 [00:38<24:49, 3.12it/s]
|
353 |
3%|▎ | 140/4790 [00:38<22:58, 3.37it/s]
|
354 |
3%|▎ | 141/4790 [00:38<21:06, 3.67it/s]
|
355 |
3%|▎ | 142/4790 [00:39<20:26, 3.79it/s]
|
356 |
3%|▎ | 143/4790 [00:39<21:11, 3.65it/s]
|
357 |
3%|▎ | 144/4790 [00:39<19:58, 3.88it/s]
|
358 |
3%|▎ | 145/4790 [00:39<18:59, 4.08it/s]
|
359 |
3%|▎ | 146/4790 [00:40<18:44, 4.13it/s]
|
360 |
3%|▎ | 147/4790 [00:40<20:34, 3.76it/s]
|
361 |
3%|▎ | 148/4790 [00:40<19:30, 3.97it/s]
|
362 |
3%|▎ | 149/4790 [00:41<21:12, 3.65it/s]
|
363 |
3%|▎ | 150/4790 [00:41<21:36, 3.58it/s]
|
364 |
3%|▎ | 151/4790 [00:41<20:19, 3.80it/s]
|
365 |
3%|▎ | 152/4790 [00:41<20:08, 3.84it/s]
|
366 |
3%|▎ | 153/4790 [00:42<21:57, 3.52it/s]
|
367 |
3%|▎ | 154/4790 [00:42<22:08, 3.49it/s]
|
368 |
3%|▎ | 155/4790 [00:42<20:34, 3.76it/s]
|
369 |
3%|▎ | 156/4790 [00:42<22:06, 3.49it/s]
|
370 |
3%|▎ | 157/4790 [00:43<20:52, 3.70it/s]
|
371 |
3%|▎ | 158/4790 [00:43<19:31, 3.95it/s]
|
372 |
3%|▎ | 159/4790 [00:43<21:04, 3.66it/s]
|
373 |
3%|▎ | 160/4790 [00:44<22:25, 3.44it/s]
|
374 |
3%|▎ | 161/4790 [00:44<21:51, 3.53it/s]
|
375 |
3%|▎ | 162/4790 [00:44<20:32, 3.75it/s]
|
376 |
3%|▎ | 163/4790 [00:44<19:43, 3.91it/s]
|
377 |
3%|▎ | 164/4790 [00:45<20:41, 3.72it/s]
|
378 |
3%|▎ | 165/4790 [00:45<19:02, 4.05it/s]
|
379 |
3%|▎ | 166/4790 [00:45<20:47, 3.71it/s]
|
380 |
3%|▎ | 167/4790 [00:45<22:56, 3.36it/s]
|
381 |
4%|▎ | 168/4790 [00:46<23:05, 3.34it/s]
|
382 |
4%|▎ | 169/4790 [00:46<21:23, 3.60it/s]
|
383 |
4%|▎ | 170/4790 [00:46<21:05, 3.65it/s]
|
384 |
4%|▎ | 171/4790 [00:47<20:26, 3.76it/s]
|
385 |
4%|▎ | 172/4790 [00:47<19:43, 3.90it/s]
|
386 |
4%|▎ | 173/4790 [00:47<21:36, 3.56it/s]
|
387 |
4%|▎ | 174/4790 [00:47<21:23, 3.60it/s]
|
388 |
4%|▎ | 175/4790 [00:48<20:53, 3.68it/s]
|
389 |
4%|▎ | 176/4790 [00:48<20:12, 3.81it/s]
|
390 |
4%|▎ | 177/4790 [00:48<19:38, 3.92it/s]
|
391 |
4%|▎ | 178/4790 [00:48<19:02, 4.04it/s]
|
392 |
4%|▎ | 179/4790 [00:49<18:51, 4.08it/s]
|
393 |
4%|▍ | 180/4790 [00:49<17:55, 4.29it/s]
|
394 |
4%|▍ | 181/4790 [00:49<20:31, 3.74it/s]
|
395 |
4%|▍ | 182/4790 [00:49<19:12, 4.00it/s]
|
396 |
4%|▍ | 183/4790 [00:50<19:09, 4.01it/s]
|
397 |
4%|▍ | 184/4790 [00:50<17:15, 4.45it/s]
|
398 |
4%|▍ | 185/4790 [00:50<21:16, 3.61it/s]
|
399 |
4%|▍ | 186/4790 [00:50<21:56, 3.50it/s]
|
400 |
4%|▍ | 187/4790 [00:51<21:13, 3.61it/s]
|
401 |
4%|▍ | 188/4790 [00:51<19:37, 3.91it/s]
|
402 |
4%|▍ | 189/4790 [00:51<19:49, 3.87it/s]
|
403 |
4%|▍ | 190/4790 [00:51<19:27, 3.94it/s]
|
404 |
4%|▍ | 191/4790 [00:52<18:22, 4.17it/s]
|
405 |
4%|▍ | 192/4790 [00:52<19:45, 3.88it/s]
|
406 |
4%|▍ | 193/4790 [00:52<19:55, 3.85it/s]
|
407 |
4%|▍ | 194/4790 [00:52<19:56, 3.84it/s]
|
408 |
4%|▍ | 195/4790 [00:53<19:34, 3.91it/s]
|
409 |
4%|▍ | 196/4790 [00:53<18:31, 4.13it/s]
|
410 |
4%|▍ | 197/4790 [00:53<17:44, 4.32it/s]
|
411 |
4%|▍ | 198/4790 [00:53<19:39, 3.89it/s]
|
412 |
4%|▍ | 199/4790 [00:54<19:52, 3.85it/s]
|
413 |
4%|▍ | 200/4790 [00:54<19:50, 3.86it/s]
|
414 |
4%|▍ | 201/4790 [00:54<20:10, 3.79it/s]
|
415 |
4%|▍ | 202/4790 [00:54<18:09, 4.21it/s]
|
416 |
4%|▍ | 203/4790 [00:55<18:39, 4.10it/s]
|
417 |
4%|▍ | 204/4790 [00:55<23:44, 3.22it/s]
|
418 |
4%|▍ | 205/4790 [00:55<21:02, 3.63it/s]
|
419 |
4%|▍ | 206/4790 [00:56<20:28, 3.73it/s]
|
420 |
4%|▍ | 207/4790 [00:56<19:35, 3.90it/s]
|
421 |
4%|▍ | 208/4790 [00:56<19:23, 3.94it/s]
|
422 |
4%|▍ | 209/4790 [00:56<20:38, 3.70it/s]
|
423 |
4%|▍ | 210/4790 [00:57<20:28, 3.73it/s]
|
424 |
4%|▍ | 211/4790 [00:57<21:45, 3.51it/s]
|
425 |
4%|▍ | 212/4790 [00:57<19:52, 3.84it/s]
|
426 |
4%|▍ | 213/4790 [00:57<19:25, 3.93it/s]
|
427 |
4%|▍ | 214/4790 [00:58<18:19, 4.16it/s]
|
428 |
4%|▍ | 215/4790 [00:58<19:07, 3.99it/s]
|
429 |
5%|▍ | 216/4790 [00:58<19:16, 3.96it/s]
|
430 |
5%|▍ | 217/4790 [00:58<20:18, 3.75it/s]
|
431 |
5%|▍ | 218/4790 [00:59<21:08, 3.61it/s]
|
432 |
5%|▍ | 219/4790 [00:59<19:39, 3.88it/s]
|
433 |
5%|▍ | 220/4790 [00:59<19:09, 3.97it/s]
|
434 |
5%|▍ | 221/4790 [00:59<18:31, 4.11it/s]
|
435 |
5%|▍ | 222/4790 [01:00<17:59, 4.23it/s]
|
436 |
5%|▍ | 223/4790 [01:00<18:22, 4.14it/s]
|
437 |
5%|▍ | 224/4790 [01:00<18:34, 4.10it/s]
|
438 |
5%|▍ | 225/4790 [01:00<18:29, 4.12it/s]
|
439 |
5%|▍ | 226/4790 [01:01<22:07, 3.44it/s]
|
440 |
5%|▍ | 227/4790 [01:01<21:26, 3.55it/s]
|
441 |
5%|▍ | 228/4790 [01:01<20:48, 3.65it/s]
|
442 |
5%|▍ | 229/4790 [01:02<20:04, 3.79it/s]
|
443 |
5%|▍ | 230/4790 [01:02<19:58, 3.80it/s]
|
444 |
5%|▍ | 231/4790 [01:02<23:39, 3.21it/s]
|
445 |
5%|▍ | 232/4790 [01:02<22:14, 3.42it/s]
|
446 |
5%|▍ | 233/4790 [01:03<22:43, 3.34it/s]
|
447 |
5%|▍ | 234/4790 [01:03<22:02, 3.45it/s]
|
448 |
5%|▍ | 235/4790 [01:03<20:39, 3.67it/s]
|
449 |
5%|▍ | 236/4790 [01:04<23:49, 3.18it/s]
|
450 |
5%|▍ | 237/4790 [01:04<24:54, 3.05it/s]
|
451 |
5%|▍ | 238/4790 [01:04<24:56, 3.04it/s]
|
452 |
5%|▍ | 239/4790 [01:05<24:16, 3.12it/s]
|
453 |
5%|▌ | 240/4790 [01:05<22:37, 3.35it/s]
|
454 |
5%|▌ | 241/4790 [01:05<26:11, 2.89it/s]
|
455 |
5%|▌ | 242/4790 [01:06<23:40, 3.20it/s]
|
456 |
5%|▌ | 243/4790 [01:06<24:51, 3.05it/s]
|
457 |
5%|▌ | 244/4790 [01:06<24:47, 3.06it/s]
|
458 |
5%|▌ | 245/4790 [01:07<22:59, 3.29it/s]
|
459 |
5%|▌ | 246/4790 [01:07<22:32, 3.36it/s]
|
460 |
5%|▌ | 247/4790 [01:07<20:16, 3.73it/s]
|
461 |
5%|▌ | 248/4790 [01:07<19:43, 3.84it/s]
|
462 |
5%|▌ | 249/4790 [01:08<21:41, 3.49it/s]
|
463 |
5%|▌ | 250/4790 [01:08<25:08, 3.01it/s]
|
464 |
5%|▌ | 251/4790 [01:08<25:17, 2.99it/s]
|
465 |
5%|▌ | 252/4790 [01:09<22:38, 3.34it/s]
|
466 |
5%|▌ | 253/4790 [01:09<20:45, 3.64it/s]
|
467 |
5%|▌ | 254/4790 [01:09<19:55, 3.79it/s]
|
468 |
5%|▌ | 255/4790 [01:09<19:58, 3.78it/s]
|
469 |
5%|▌ | 256/4790 [01:10<20:54, 3.61it/s]
|
470 |
5%|▌ | 257/4790 [01:10<22:47, 3.32it/s]
|
471 |
5%|▌ | 258/4790 [01:10<20:47, 3.63it/s]
|
472 |
5%|▌ | 259/4790 [01:10<18:58, 3.98it/s]
|
473 |
5%|▌ | 260/4790 [01:11<21:14, 3.55it/s]
|
474 |
5%|▌ | 261/4790 [01:11<20:03, 3.76it/s]
|
475 |
5%|▌ | 262/4790 [01:11<21:05, 3.58it/s]
|
476 |
5%|▌ | 263/4790 [01:12<21:12, 3.56it/s]
|
477 |
6%|▌ | 264/4790 [01:12<20:51, 3.62it/s]
|
478 |
6%|▌ | 265/4790 [01:12<22:23, 3.37it/s]
|
479 |
6%|▌ | 266/4790 [01:13<21:56, 3.44it/s]
|
480 |
6%|▌ | 267/4790 [01:13<22:31, 3.35it/s]
|
481 |
6%|▌ | 268/4790 [01:13<21:57, 3.43it/s]
|
482 |
6%|▌ | 269/4790 [01:13<22:48, 3.30it/s]
|
483 |
6%|▌ | 270/4790 [01:14<22:38, 3.33it/s]
|
484 |
6%|▌ | 271/4790 [01:14<21:37, 3.48it/s]
|
485 |
6%|▌ | 272/4790 [01:14<19:41, 3.82it/s]
|
486 |
6%|▌ | 273/4790 [01:14<18:42, 4.02it/s]
|
487 |
6%|▌ | 274/4790 [01:15<18:50, 3.99it/s]
|
488 |
6%|▌ | 275/4790 [01:15<19:49, 3.79it/s]
|
489 |
6%|▌ | 276/4790 [01:15<17:32, 4.29it/s]
|
490 |
6%|▌ | 277/4790 [01:15<16:46, 4.48it/s]
|
491 |
6%|▌ | 278/4790 [01:16<16:39, 4.51it/s]
|
492 |
6%|▌ | 279/4790 [01:16<18:49, 3.99it/s]
|
493 |
6%|▌ | 280/4790 [01:16<17:38, 4.26it/s]
|
494 |
6%|▌ | 281/4790 [01:16<16:33, 4.54it/s]
|
495 |
6%|▌ | 282/4790 [01:17<20:05, 3.74it/s]
|
496 |
6%|▌ | 283/4790 [01:17<18:27, 4.07it/s]
|
497 |
6%|▌ | 284/4790 [01:17<18:32, 4.05it/s]
|
498 |
6%|▌ | 285/4790 [01:17<18:28, 4.07it/s]
|
499 |
6%|▌ | 286/4790 [01:18<18:14, 4.12it/s]
|
500 |
6%|▌ | 287/4790 [01:18<21:27, 3.50it/s]
|
501 |
6%|▌ | 288/4790 [01:18<21:52, 3.43it/s]
|
502 |
6%|▌ | 289/4790 [01:18<20:33, 3.65it/s]
|
503 |
6%|▌ | 290/4790 [01:19<21:24, 3.50it/s]
|
504 |
6%|▌ | 291/4790 [01:19<20:36, 3.64it/s]
|
505 |
6%|▌ | 292/4790 [01:19<19:57, 3.76it/s]
|
506 |
6%|▌ | 293/4790 [01:20<24:15, 3.09it/s]
|
507 |
6%|▌ | 294/4790 [01:20<22:18, 3.36it/s]
|
508 |
6%|▌ | 295/4790 [01:20<23:18, 3.21it/s]
|
509 |
6%|▌ | 296/4790 [01:21<25:14, 2.97it/s]
|
510 |
6%|▌ | 297/4790 [01:21<24:18, 3.08it/s]
|
511 |
6%|▌ | 298/4790 [01:21<21:32, 3.48it/s]
|
512 |
6%|▌ | 299/4790 [01:21<20:51, 3.59it/s]
|
513 |
6%|▋ | 300/4790 [01:22<19:20, 3.87it/s]
|
514 |
6%|▋ | 301/4790 [01:22<19:39, 3.81it/s]
|
515 |
6%|▋ | 302/4790 [01:22<19:31, 3.83it/s]
|
516 |
6%|▋ | 303/4790 [01:22<20:12, 3.70it/s]
|
517 |
6%|▋ | 304/4790 [01:23<19:28, 3.84it/s]
|
518 |
6%|▋ | 305/4790 [01:23<19:17, 3.88it/s]
|
519 |
6%|▋ | 306/4790 [01:23<17:51, 4.18it/s]
|
520 |
6%|▋ | 307/4790 [01:23<18:10, 4.11it/s]
|
521 |
6%|▋ | 308/4790 [01:24<23:32, 3.17it/s]
|
522 |
6%|▋ | 309/4790 [01:24<21:51, 3.42it/s]
|
523 |
6%|▋ | 310/4790 [01:24<20:53, 3.57it/s]
|
524 |
6%|▋ | 311/4790 [01:25<20:05, 3.72it/s]
|
525 |
7%|▋ | 312/4790 [01:25<19:17, 3.87it/s]
|
526 |
7%|▋ | 313/4790 [01:25<19:03, 3.91it/s]
|
527 |
7%|��� | 314/4790 [01:25<21:26, 3.48it/s]
|
528 |
7%|▋ | 315/4790 [01:26<20:37, 3.61it/s]
|
529 |
7%|▋ | 316/4790 [01:26<20:04, 3.71it/s]
|
530 |
7%|▋ | 317/4790 [01:26<19:26, 3.83it/s]
|
531 |
7%|▋ | 318/4790 [01:27<20:44, 3.59it/s]
|
532 |
7%|▋ | 319/4790 [01:27<19:54, 3.74it/s]
|
533 |
7%|▋ | 320/4790 [01:27<22:32, 3.30it/s]
|
534 |
7%|▋ | 321/4790 [01:27<21:02, 3.54it/s]
|
535 |
7%|▋ | 322/4790 [01:28<21:39, 3.44it/s]
|
536 |
7%|▋ | 323/4790 [01:28<21:36, 3.45it/s]
|
537 |
7%|▋ | 324/4790 [01:28<20:08, 3.70it/s]
|
538 |
7%|▋ | 325/4790 [01:29<20:12, 3.68it/s]
|
539 |
7%|▋ | 326/4790 [01:29<18:55, 3.93it/s]
|
540 |
7%|▋ | 327/4790 [01:29<18:47, 3.96it/s]
|
541 |
7%|▋ | 328/4790 [01:29<17:11, 4.33it/s]
|
542 |
7%|▋ | 329/4790 [01:29<19:41, 3.78it/s]
|
543 |
7%|▋ | 330/4790 [01:30<19:27, 3.82it/s]
|
544 |
7%|▋ | 331/4790 [01:30<19:14, 3.86it/s]
|
545 |
7%|▋ | 332/4790 [01:30<19:45, 3.76it/s]
|
546 |
7%|▋ | 333/4790 [01:31<19:15, 3.86it/s]
|
547 |
7%|▋ | 334/4790 [01:31<19:12, 3.86it/s]
|
548 |
7%|▋ | 335/4790 [01:31<19:52, 3.74it/s]
|
549 |
7%|▋ | 336/4790 [01:31<21:35, 3.44it/s]
|
550 |
7%|▋ | 337/4790 [01:32<25:21, 2.93it/s]
|
551 |
7%|▋ | 338/4790 [01:32<24:09, 3.07it/s]
|
552 |
7%|▋ | 339/4790 [01:32<21:21, 3.47it/s]
|
553 |
7%|▋ | 340/4790 [01:33<21:04, 3.52it/s]
|
554 |
7%|▋ | 341/4790 [01:33<21:03, 3.52it/s]
|
555 |
7%|▋ | 342/4790 [01:33<18:26, 4.02it/s]
|
556 |
7%|▋ | 343/4790 [01:33<17:48, 4.16it/s]
|
557 |
7%|▋ | 344/4790 [01:34<16:38, 4.45it/s]
|
558 |
7%|▋ | 345/4790 [01:34<18:20, 4.04it/s]
|
559 |
7%|▋ | 346/4790 [01:34<18:51, 3.93it/s]
|
560 |
7%|▋ | 347/4790 [01:34<18:24, 4.02it/s]
|
561 |
7%|▋ | 348/4790 [01:35<18:23, 4.02it/s]
|
562 |
7%|▋ | 349/4790 [01:35<19:05, 3.88it/s]
|
563 |
7%|▋ | 350/4790 [01:35<18:45, 3.94it/s]
|
564 |
7%|▋ | 351/4790 [01:35<19:40, 3.76it/s]
|
565 |
7%|▋ | 352/4790 [01:36<20:27, 3.62it/s]
|
566 |
7%|▋ | 353/4790 [01:36<20:13, 3.66it/s]
|
567 |
7%|▋ | 354/4790 [01:36<21:46, 3.39it/s]
|
568 |
7%|▋ | 355/4790 [01:37<20:23, 3.62it/s]
|
569 |
7%|▋ | 356/4790 [01:37<20:12, 3.66it/s]
|
570 |
7%|▋ | 357/4790 [01:37<20:34, 3.59it/s]
|
571 |
7%|▋ | 358/4790 [01:37<20:09, 3.66it/s]
|
572 |
7%|▋ | 359/4790 [01:38<21:14, 3.48it/s]
|
573 |
8%|▊ | 360/4790 [01:38<20:40, 3.57it/s]
|
574 |
8%|▊ | 361/4790 [01:38<19:59, 3.69it/s]
|
575 |
8%|▊ | 362/4790 [01:39<23:39, 3.12it/s]
|
576 |
8%|▊ | 363/4790 [01:39<23:06, 3.19it/s]
|
577 |
8%|▊ | 364/4790 [01:39<21:44, 3.39it/s]
|
578 |
8%|▊ | 365/4790 [01:39<20:51, 3.54it/s]
|
579 |
8%|▊ | 366/4790 [01:40<20:37, 3.57it/s]
|
580 |
8%|▊ | 367/4790 [01:40<20:49, 3.54it/s]
|
581 |
8%|▊ | 368/4790 [01:40<19:58, 3.69it/s]
|
582 |
8%|▊ | 369/4790 [01:41<23:59, 3.07it/s]
|
583 |
8%|▊ | 370/4790 [01:41<24:54, 2.96it/s]
|
584 |
8%|▊ | 371/4790 [01:41<23:32, 3.13it/s]
|
585 |
8%|▊ | 372/4790 [01:42<24:14, 3.04it/s]
|
586 |
8%|▊ | 373/4790 [01:42<21:57, 3.35it/s]
|
587 |
8%|▊ | 374/4790 [01:42<20:08, 3.65it/s]
|
588 |
8%|▊ | 375/4790 [01:43<23:55, 3.08it/s]
|
589 |
8%|▊ | 376/4790 [01:43<23:20, 3.15it/s]
|
590 |
8%|▊ | 377/4790 [01:43<20:48, 3.53it/s]
|
591 |
8%|▊ | 378/4790 [01:43<20:24, 3.60it/s]
|
592 |
8%|▊ | 379/4790 [01:44<19:31, 3.77it/s]
|
593 |
8%|▊ | 380/4790 [01:44<19:40, 3.74it/s]
|
594 |
8%|▊ | 381/4790 [01:44<18:52, 3.89it/s]
|
595 |
8%|▊ | 382/4790 [01:44<17:12, 4.27it/s]
|
596 |
8%|▊ | 383/4790 [01:44<16:23, 4.48it/s]
|
597 |
8%|▊ | 384/4790 [01:45<16:58, 4.32it/s]
|
598 |
8%|▊ | 385/4790 [01:45<19:00, 3.86it/s]
|
599 |
8%|▊ | 386/4790 [01:45<20:09, 3.64it/s]
|
600 |
8%|▊ | 387/4790 [01:46<21:31, 3.41it/s]
|
601 |
8%|▊ | 388/4790 [01:46<20:03, 3.66it/s]
|
602 |
8%|▊ | 389/4790 [01:46<22:50, 3.21it/s]
|
603 |
8%|▊ | 390/4790 [01:46<20:16, 3.62it/s]
|
604 |
8%|▊ | 391/4790 [01:47<21:09, 3.47it/s]
|
605 |
8%|▊ | 392/4790 [01:47<19:30, 3.76it/s]
|
606 |
8%|▊ | 393/4790 [01:47<17:51, 4.10it/s]
|
607 |
8%|▊ | 394/4790 [01:47<17:49, 4.11it/s]
|
608 |
8%|▊ | 395/4790 [01:48<18:08, 4.04it/s]
|
609 |
8%|▊ | 396/4790 [01:48<17:36, 4.16it/s]
|
610 |
8%|▊ | 397/4790 [01:48<19:35, 3.74it/s]
|
611 |
8%|▊ | 398/4790 [01:49<20:26, 3.58it/s]
|
612 |
8%|▊ | 399/4790 [01:49<20:14, 3.61it/s]
|
613 |
8%|▊ | 400/4790 [01:49<18:53, 3.87it/s]
|
614 |
8%|▊ | 401/4790 [01:49<19:57, 3.67it/s]
|
615 |
8%|▊ | 402/4790 [01:50<18:32, 3.94it/s]
|
616 |
8%|▊ | 403/4790 [01:50<18:04, 4.05it/s]
|
617 |
8%|▊ | 404/4790 [01:50<17:58, 4.07it/s]
|
618 |
8%|▊ | 405/4790 [01:50<18:34, 3.94it/s]
|
619 |
8%|▊ | 406/4790 [01:51<19:41, 3.71it/s]
|
620 |
8%|▊ | 407/4790 [01:51<18:06, 4.03it/s]
|
621 |
9%|▊ | 408/4790 [01:51<19:27, 3.75it/s]
|
622 |
9%|▊ | 409/4790 [01:51<18:26, 3.96it/s]
|
623 |
9%|▊ | 410/4790 [01:52<18:19, 3.98it/s]
|
624 |
9%|▊ | 411/4790 [01:52<19:04, 3.83it/s]
|
625 |
9%|▊ | 412/4790 [01:52<22:31, 3.24it/s]
|
626 |
9%|▊ | 413/4790 [01:53<22:04, 3.30it/s]
|
627 |
9%|▊ | 414/4790 [01:53<20:44, 3.52it/s]
|
628 |
9%|▊ | 415/4790 [01:53<19:50, 3.67it/s]
|
629 |
9%|▊ | 416/4790 [01:53<20:30, 3.55it/s]
|
630 |
9%|▊ | 417/4790 [01:54<19:17, 3.78it/s]
|
631 |
9%|▊ | 418/4790 [01:54<17:48, 4.09it/s]
|
632 |
9%|▊ | 419/4790 [01:54<17:43, 4.11it/s]
|
633 |
9%|▉ | 420/4790 [01:54<17:57, 4.06it/s]
|
634 |
9%|▉ | 421/4790 [01:55<18:55, 3.85it/s]
|
635 |
9%|▉ | 422/4790 [01:55<18:49, 3.87it/s]
|
636 |
9%|▉ | 423/4790 [01:55<18:09, 4.01it/s]
|
637 |
9%|▉ | 424/4790 [01:55<18:01, 4.04it/s]
|
638 |
9%|▉ | 425/4790 [01:56<18:29, 3.93it/s]
|
639 |
9%|▉ | 426/4790 [01:56<18:20, 3.97it/s]
|
640 |
9%|▉ | 427/4790 [01:56<17:21, 4.19it/s]
|
641 |
9%|▉ | 428/4790 [01:56<17:53, 4.06it/s]
|
642 |
9%|▉ | 429/4790 [01:57<17:32, 4.14it/s]
|
643 |
9%|▉ | 430/4790 [01:57<16:50, 4.32it/s]
|
644 |
9%|▉ | 431/4790 [01:57<16:49, 4.32it/s]
|
645 |
9%|▉ | 432/4790 [01:57<16:52, 4.30it/s]
|
646 |
9%|▉ | 433/4790 [01:57<16:16, 4.46it/s]
|
647 |
9%|▉ | 434/4790 [01:58<17:52, 4.06it/s]
|
648 |
9%|▉ | 435/4790 [01:58<17:23, 4.17it/s]
|
649 |
9%|▉ | 436/4790 [01:58<16:56, 4.28it/s]
|
650 |
9%|▉ | 437/4790 [01:58<19:06, 3.80it/s]
|
651 |
9%|▉ | 438/4790 [01:59<19:18, 3.76it/s]
|
652 |
9%|▉ | 439/4790 [01:59<18:51, 3.84it/s]
|
653 |
9%|▉ | 440/4790 [01:59<19:20, 3.75it/s]
|
654 |
9%|▉ | 441/4790 [02:00<20:58, 3.46it/s]
|
655 |
9%|▉ | 442/4790 [02:00<20:20, 3.56it/s]
|
656 |
9%|▉ | 443/4790 [02:00<20:12, 3.58it/s]
|
657 |
9%|▉ | 444/4790 [02:00<18:59, 3.81it/s]
|
658 |
9%|▉ | 445/4790 [02:01<17:37, 4.11it/s]
|
659 |
9%|▉ | 446/4790 [02:01<19:02, 3.80it/s]
|
660 |
9%|▉ | 447/4790 [02:01<17:38, 4.10it/s]
|
661 |
9%|▉ | 448/4790 [02:01<17:54, 4.04it/s]
|
662 |
9%|▉ | 449/4790 [02:02<16:45, 4.32it/s]
|
663 |
9%|▉ | 450/4790 [02:02<17:07, 4.22it/s]
|
664 |
9%|▉ | 451/4790 [02:02<16:06, 4.49it/s]
|
665 |
9%|▉ | 452/4790 [02:02<19:32, 3.70it/s]
|
666 |
9%|▉ | 453/4790 [02:03<19:30, 3.70it/s]
|
667 |
9%|▉ | 454/4790 [02:03<18:34, 3.89it/s]
|
668 |
9%|▉ | 455/4790 [02:03<17:23, 4.16it/s]
|
669 |
10%|▉ | 456/4790 [02:03<18:24, 3.92it/s]
|
670 |
10%|▉ | 457/4790 [02:04<25:31, 2.83it/s]
|
671 |
10%|▉ | 458/4790 [02:04<23:07, 3.12it/s]
|
672 |
10%|▉ | 459/4790 [02:05<23:20, 3.09it/s]
|
673 |
10%|▉ | 460/4790 [02:05<22:18, 3.24it/s]
|
674 |
10%|▉ | 461/4790 [02:05<21:41, 3.33it/s]
|
675 |
10%|▉ | 462/4790 [02:05<20:15, 3.56it/s]
|
676 |
10%|▉ | 463/4790 [02:06<24:21, 2.96it/s]
|
677 |
10%|▉ | 464/4790 [02:06<21:39, 3.33it/s]
|
678 |
10%|▉ | 465/4790 [02:06<19:06, 3.77it/s]
|
679 |
10%|▉ | 466/4790 [02:06<18:17, 3.94it/s]
|
680 |
10%|▉ | 467/4790 [02:07<18:49, 3.83it/s]
|
681 |
10%|▉ | 468/4790 [02:07<18:49, 3.83it/s]
|
682 |
10%|▉ | 469/4790 [02:07<18:00, 4.00it/s]
|
683 |
10%|▉ | 470/4790 [02:07<18:25, 3.91it/s]
|
684 |
10%|▉ | 471/4790 [02:08<20:39, 3.49it/s]
|
685 |
10%|▉ | 472/4790 [02:08<20:58, 3.43it/s]
|
686 |
10%|▉ | 473/4790 [02:08<20:46, 3.46it/s]
|
687 |
10%|▉ | 474/4790 [02:09<19:24, 3.71it/s]
|
688 |
10%|▉ | 475/4790 [02:09<17:54, 4.02it/s]
|
689 |
10%|▉ | 476/4790 [02:09<18:35, 3.87it/s]
|
690 |
10%|▉ | 477/4790 [02:09<17:33, 4.09it/s]
|
691 |
10%|▉ | 478/4790 [02:10<20:27, 3.51it/s]
|
692 |
10%|█ | 479/4790 [02:10<19:05, 3.76it/s][INFO|trainer.py:811] 2024-09-05 13:37:19,924 >> The following columns in the evaluation set don't have a corresponding argument in `BertForTokenClassification.forward` and have been ignored: ner_tags, id, tokens. If ner_tags, id, tokens are not expected by `BertForTokenClassification.forward`, you can safely ignore this message.
|
693 |
+
[INFO|trainer.py:3819] 2024-09-05 13:37:19,927 >>
|
694 |
+
***** Running Evaluation *****
|
695 |
+
[INFO|trainer.py:3821] 2024-09-05 13:37:19,927 >> Num examples = 6798
|
696 |
+
[INFO|trainer.py:3824] 2024-09-05 13:37:19,927 >> Batch size = 8
|
697 |
+
|
698 |
+
|
699 |
0%| | 0/850 [00:00<?, ?it/s][A
|
700 |
+
|
701 |
1%| | 9/850 [00:00<00:11, 75.89it/s][A
|
702 |
+
|
703 |
2%|▏ | 18/850 [00:00<00:10, 78.45it/s][A
|
704 |
+
|
705 |
3%|▎ | 27/850 [00:00<00:10, 80.37it/s][A
|
706 |
+
|
707 |
4%|▍ | 37/850 [00:00<00:09, 84.54it/s][A
|
708 |
+
|
709 |
5%|▌ | 46/850 [00:00<00:09, 85.60it/s][A
|
710 |
+
|
711 |
6%|▋ | 55/850 [00:00<00:10, 78.60it/s][A
|
712 |
+
|
713 |
8%|▊ | 64/850 [00:00<00:09, 79.44it/s][A
|
714 |
+
|
715 |
9%|▊ | 73/850 [00:00<00:10, 75.52it/s][A
|
716 |
+
|
717 |
10%|▉ | 81/850 [00:01<00:10, 76.28it/s][A
|
718 |
+
|
719 |
11%|█ | 90/850 [00:01<00:09, 80.04it/s][A
|
720 |
+
|
721 |
12%|█▏ | 99/850 [00:01<00:09, 82.32it/s][A
|
722 |
+
|
723 |
13%|█▎ | 109/850 [00:01<00:08, 84.86it/s][A
|
724 |
+
|
725 |
14%|█▍ | 118/850 [00:01<00:08, 85.25it/s][A
|
726 |
+
|
727 |
15%|█▍ | 127/850 [00:01<00:08, 86.48it/s][A
|
728 |
+
|
729 |
16%|█▌ | 136/850 [00:01<00:08, 85.42it/s][A
|
730 |
+
|
731 |
17%|█▋ | 145/850 [00:01<00:08, 81.53it/s][A
|
732 |
+
|
733 |
18%|█▊ | 154/850 [00:01<00:08, 82.60it/s][A
|
734 |
+
|
735 |
19%|█▉ | 163/850 [00:01<00:08, 84.65it/s][A
|
736 |
+
|
737 |
20%|██ | 172/850 [00:02<00:07, 85.43it/s][A
|
738 |
+
|
739 |
21%|██▏ | 181/850 [00:02<00:07, 85.66it/s][A
|
740 |
+
|
741 |
22%|██▏ | 190/850 [00:02<00:07, 84.23it/s][A
|
742 |
+
|
743 |
23%|██▎ | 199/850 [00:02<00:07, 85.01it/s][A
|
744 |
+
|
745 |
24%|██▍ | 208/850 [00:02<00:07, 83.44it/s][A
|
746 |
+
|
747 |
26%|██▌ | 217/850 [00:02<00:07, 81.88it/s][A
|
748 |
+
|
749 |
27%|██▋ | 227/850 [00:02<00:07, 84.16it/s][A
|
750 |
+
|
751 |
28%|██▊ | 237/850 [00:02<00:07, 86.15it/s][A
|
752 |
+
|
753 |
29%|██▉ | 246/850 [00:02<00:07, 84.46it/s][A
|
754 |
+
|
755 |
30%|███ | 256/850 [00:03<00:06, 88.24it/s][A
|
756 |
+
|
757 |
31%|███ | 265/850 [00:03<00:06, 87.70it/s][A
|
758 |
+
|
759 |
32%|███▏ | 275/850 [00:03<00:06, 88.16it/s][A
|
760 |
+
|
761 |
33%|███▎ | 284/850 [00:03<00:06, 87.65it/s][A
|
762 |
+
|
763 |
35%|███▍ | 294/850 [00:03<00:06, 88.09it/s][A
|
764 |
+
|
765 |
36%|███▌ | 303/850 [00:03<00:06, 86.09it/s][A
|
766 |
+
|
767 |
37%|███▋ | 313/850 [00:03<00:06, 87.89it/s][A
|
768 |
+
|
769 |
38%|███▊ | 322/850 [00:03<00:06, 87.79it/s][A
|
770 |
+
|
771 |
39%|███▉ | 331/850 [00:03<00:05, 87.25it/s][A
|
772 |
+
|
773 |
40%|████ | 340/850 [00:04<00:05, 87.67it/s][A
|
774 |
+
|
775 |
41%|████ | 349/850 [00:04<00:05, 86.98it/s][A
|
776 |
+
|
777 |
42%|████▏ | 358/850 [00:04<00:05, 85.62it/s][A
|
778 |
+
|
779 |
43%|████▎ | 367/850 [00:04<00:05, 85.83it/s][A
|
780 |
+
|
781 |
44%|████▍ | 376/850 [00:04<00:05, 84.60it/s][A
|
782 |
+
|
783 |
45%|████▌ | 385/850 [00:04<00:05, 82.20it/s][A
|
784 |
+
|
785 |
46%|████▋ | 394/850 [00:04<00:05, 80.28it/s][A
|
786 |
+
|
787 |
47%|████▋ | 403/850 [00:04<00:05, 81.93it/s][A
|
788 |
+
|
789 |
49%|████▊ | 413/850 [00:04<00:05, 85.88it/s][A
|
790 |
+
|
791 |
50%|████▉ | 423/850 [00:05<00:04, 87.54it/s][A
|
792 |
+
|
793 |
51%|█████ | 432/850 [00:05<00:04, 87.55it/s][A
|
794 |
+
|
795 |
52%|█████▏ | 441/850 [00:05<00:04, 86.85it/s][A
|
796 |
+
|
797 |
53%|█████▎ | 450/850 [00:05<00:04, 83.69it/s][A
|
798 |
+
|
799 |
54%|█████▍ | 460/850 [00:05<00:04, 86.80it/s][A
|
800 |
+
|
801 |
55%|█████▌ | 470/850 [00:05<00:04, 88.96it/s][A
|
802 |
+
|
803 |
56%|█████▋ | 480/850 [00:05<00:04, 90.23it/s][A
|
804 |
+
|
805 |
58%|█████▊ | 490/850 [00:05<00:04, 88.23it/s][A
|
806 |
+
|
807 |
59%|█████▉ | 500/850 [00:05<00:03, 89.90it/s][A
|
808 |
+
|
809 |
60%|██████ | 510/850 [00:05<00:03, 89.99it/s][A
|
810 |
+
|
811 |
61%|██████ | 520/850 [00:06<00:03, 90.30it/s][A
|
812 |
+
|
813 |
62%|██████▏ | 530/850 [00:06<00:03, 86.55it/s][A
|
814 |
+
|
815 |
63%|██████▎ | 539/850 [00:06<00:03, 85.36it/s][A
|
816 |
+
|
817 |
64%|██████▍ | 548/850 [00:06<00:03, 83.42it/s][A
|
818 |
+
|
819 |
66%|██████▌ | 557/850 [00:06<00:03, 83.02it/s][A
|
820 |
+
|
821 |
67%|██████▋ | 566/850 [00:06<00:03, 80.41it/s][A
|
822 |
+
|
823 |
68%|██████▊ | 575/850 [00:06<00:03, 82.97it/s][A
|
824 |
+
|
825 |
69%|██████▊ | 584/850 [00:06<00:03, 83.09it/s][A
|
826 |
+
|
827 |
70%|██████▉ | 593/850 [00:06<00:03, 84.13it/s][A
|
828 |
+
|
829 |
71%|███████ | 602/850 [00:07<00:02, 83.90it/s][A
|
830 |
+
|
831 |
72%|███████▏ | 611/850 [00:07<00:02, 84.78it/s][A
|
832 |
+
|
833 |
73%|███████▎ | 620/850 [00:07<00:02, 84.83it/s][A
|
834 |
+
|
835 |
74%|███████▍ | 629/850 [00:07<00:02, 84.00it/s][A
|
836 |
+
|
837 |
75%|███████▌ | 638/850 [00:07<00:02, 84.53it/s][A
|
838 |
+
|
839 |
76%|███████▌ | 647/850 [00:07<00:02, 85.90it/s][A
|
840 |
+
|
841 |
77%|███████▋ | 656/850 [00:07<00:02, 86.93it/s][A
|
842 |
+
|
843 |
78%|███████▊ | 666/850 [00:07<00:02, 88.25it/s][A
|
844 |
+
|
845 |
79%|███████▉ | 675/850 [00:07<00:02, 85.00it/s][A
|
846 |
+
|
847 |
80%|████████ | 684/850 [00:08<00:01, 85.36it/s][A
|
848 |
+
|
849 |
82%|████████▏ | 693/850 [00:08<00:01, 83.16it/s][A
|
850 |
+
|
851 |
83%|████████▎ | 702/850 [00:08<00:01, 83.49it/s][A
|
852 |
+
|
853 |
84%|████████▎ | 711/850 [00:08<00:01, 82.74it/s][A
|
854 |
+
|
855 |
85%|████████▍ | 720/850 [00:08<00:01, 83.13it/s][A
|
856 |
+
|
857 |
86%|████████▌ | 729/850 [00:08<00:01, 80.00it/s][A
|
858 |
+
|
859 |
87%|████████▋ | 738/850 [00:08<00:01, 80.48it/s][A
|
860 |
+
|
861 |
88%|████████▊ | 747/850 [00:08<00:01, 80.29it/s][A
|
862 |
+
|
863 |
89%|████████▉ | 756/850 [00:08<00:01, 80.87it/s][A
|
864 |
+
|
865 |
90%|█████████ | 765/850 [00:09<00:01, 82.87it/s][A
|
866 |
+
|
867 |
91%|█████████ | 774/850 [00:09<00:00, 82.26it/s][A
|
868 |
+
|
869 |
92%|█████████▏| 783/850 [00:09<00:00, 80.12it/s][A
|
870 |
+
|
871 |
93%|█████████▎| 792/850 [00:09<00:00, 79.96it/s][A
|
872 |
+
|
873 |
94%|█████████▍| 802/850 [00:09<00:00, 83.67it/s][A
|
874 |
+
|
875 |
95%|█████████▌| 811/850 [00:09<00:00, 81.61it/s][A
|
876 |
+
|
877 |
97%|█████████▋| 821/850 [00:09<00:00, 85.11it/s][A
|
878 |
+
|
879 |
98%|█████████▊| 830/850 [00:09<00:00, 84.40it/s][A
|
880 |
+
|
881 |
99%|█████████▊| 839/850 [00:09<00:00, 84.53it/s][A
|
882 |
+
|
883 |
|
884 |
+
|
885 |
|
886 |
10%|█ | 479/4790 [02:24<19:05, 3.76it/s]
|
887 |
+
|
888 |
+
|
889 |
[A[INFO|trainer.py:3503] 2024-09-05 13:37:33,956 >> Saving model checkpoint to /content/dissertation/scripts/ner/output/checkpoint-479
|
890 |
+
[INFO|configuration_utils.py:472] 2024-09-05 13:37:33,957 >> Configuration saved in /content/dissertation/scripts/ner/output/checkpoint-479/config.json
|
891 |
+
[INFO|modeling_utils.py:2799] 2024-09-05 13:37:34,851 >> Model weights saved in /content/dissertation/scripts/ner/output/checkpoint-479/model.safetensors
|
892 |
+
[INFO|tokenization_utils_base.py:2684] 2024-09-05 13:37:34,852 >> tokenizer config file saved in /content/dissertation/scripts/ner/output/checkpoint-479/tokenizer_config.json
|
893 |
+
[INFO|tokenization_utils_base.py:2693] 2024-09-05 13:37:34,852 >> Special tokens file saved in /content/dissertation/scripts/ner/output/checkpoint-479/special_tokens_map.json
|
894 |
+
[INFO|tokenization_utils_base.py:2684] 2024-09-05 13:37:36,650 >> tokenizer config file saved in /content/dissertation/scripts/ner/output/tokenizer_config.json
|
895 |
+
[INFO|tokenization_utils_base.py:2693] 2024-09-05 13:37:36,650 >> Special tokens file saved in /content/dissertation/scripts/ner/output/special_tokens_map.json
|
896 |
+
|
897 |
10%|█ | 480/4790 [02:27<6:21:25, 5.31s/it]
|
898 |
10%|█ | 481/4790 [02:27<4:31:30, 3.78s/it]
|
899 |
10%|█ | 482/4790 [02:27<3:16:31, 2.74s/it]
|
900 |
10%|█ | 483/4790 [02:28<2:25:49, 2.03s/it]
|
901 |
10%|█ | 484/4790 [02:28<1:46:37, 1.49s/it]
|
902 |
10%|█ | 485/4790 [02:28<1:22:39, 1.15s/it]
|
903 |
10%|█ | 486/4790 [02:29<1:02:21, 1.15it/s]
|
904 |
10%|█ | 487/4790 [02:29<50:31, 1.42it/s]
|
905 |
10%|█ | 488/4790 [02:29<41:55, 1.71it/s]
|
906 |
10%|█ | 489/4790 [02:29<33:13, 2.16it/s]
|
907 |
10%|█ | 490/4790 [02:30<29:22, 2.44it/s]
|
908 |
10%|█ | 491/4790 [02:30<24:58, 2.87it/s]
|
909 |
10%|█ | 492/4790 [02:30<22:15, 3.22it/s]
|
910 |
10%|█ | 493/4790 [02:30<20:11, 3.55it/s]
|
911 |
10%|█ | 494/4790 [02:31<20:24, 3.51it/s]
|
912 |
10%|█ | 495/4790 [02:31<19:16, 3.71it/s]
|
913 |
10%|█ | 496/4790 [02:31<19:33, 3.66it/s]
|
914 |
10%|█ | 497/4790 [02:32<21:30, 3.33it/s]
|
915 |
10%|█ | 498/4790 [02:32<22:35, 3.17it/s]
|
916 |
10%|█ | 499/4790 [02:32<20:38, 3.46it/s]
|
917 |
10%|█ | 500/4790 [02:32<19:03, 3.75it/s]
|
918 |
|
919 |
10%|█ | 500/4790 [02:32<19:03, 3.75it/s]
|
920 |
10%|█ | 501/4790 [02:33<19:03, 3.75it/s]
|
921 |
10%|█ | 502/4790 [02:33<19:37, 3.64it/s]
|
922 |
11%|█ | 503/4790 [02:33<18:13, 3.92it/s]
|
923 |
11%|█ | 504/4790 [02:34<21:59, 3.25it/s]
|
924 |
11%|█ | 505/4790 [02:34<20:52, 3.42it/s]
|
925 |
11%|█ | 506/4790 [02:34<20:21, 3.51it/s]
|
926 |
11%|█ | 507/4790 [02:34<18:42, 3.82it/s]
|
927 |
11%|█ | 508/4790 [02:35<22:26, 3.18it/s]
|
928 |
11%|█ | 509/4790 [02:35<22:30, 3.17it/s]
|
929 |
11%|█ | 510/4790 [02:35<21:05, 3.38it/s]
|
930 |
11%|█ | 511/4790 [02:36<19:19, 3.69it/s]
|
931 |
11%|█ | 512/4790 [02:36<19:44, 3.61it/s]
|
932 |
11%|█ | 513/4790 [02:36<20:22, 3.50it/s]
|
933 |
11%|█ | 514/4790 [02:36<19:52, 3.59it/s]
|
934 |
11%|█ | 515/4790 [02:37<21:09, 3.37it/s]
|
935 |
11%|█ | 516/4790 [02:37<20:38, 3.45it/s]
|
936 |
11%|█ | 517/4790 [02:37<20:57, 3.40it/s]
|
937 |
11%|█ | 518/4790 [02:38<19:47, 3.60it/s]
|
938 |
11%|█ | 519/4790 [02:38<18:21, 3.88it/s]
|
train_results.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 9.989888776541962,
|
3 |
+
"total_flos": 1.7928149517546354e+16,
|
4 |
+
"train_loss": 0.002201772875978276,
|
5 |
+
"train_runtime": 1511.1925,
|
6 |
+
"train_samples": 31619,
|
7 |
+
"train_samples_per_second": 209.232,
|
8 |
+
"train_steps_per_second": 3.269
|
9 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,225 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 0.9140096618357488,
|
3 |
+
"best_model_checkpoint": "/content/dissertation/scripts/ner/output/checkpoint-4940",
|
4 |
+
"epoch": 9.989888776541962,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 4940,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.9989888776541962,
|
13 |
+
"eval_accuracy": 0.9982926512594131,
|
14 |
+
"eval_f1": 0.8903781713738632,
|
15 |
+
"eval_loss": 0.004970682319253683,
|
16 |
+
"eval_precision": 0.8806818181818182,
|
17 |
+
"eval_recall": 0.9002904162633107,
|
18 |
+
"eval_runtime": 13.9779,
|
19 |
+
"eval_samples_per_second": 486.339,
|
20 |
+
"eval_steps_per_second": 60.81,
|
21 |
+
"step": 494
|
22 |
+
},
|
23 |
+
{
|
24 |
+
"epoch": 1.0111223458038423,
|
25 |
+
"grad_norm": 0.07247231900691986,
|
26 |
+
"learning_rate": 4.4939271255060735e-05,
|
27 |
+
"loss": 0.0131,
|
28 |
+
"step": 500
|
29 |
+
},
|
30 |
+
{
|
31 |
+
"epoch": 2.0,
|
32 |
+
"eval_accuracy": 0.9985328486107504,
|
33 |
+
"eval_f1": 0.9090909090909091,
|
34 |
+
"eval_loss": 0.004644014406949282,
|
35 |
+
"eval_precision": 0.9034416826003824,
|
36 |
+
"eval_recall": 0.914811229428848,
|
37 |
+
"eval_runtime": 14.1023,
|
38 |
+
"eval_samples_per_second": 482.05,
|
39 |
+
"eval_steps_per_second": 60.274,
|
40 |
+
"step": 989
|
41 |
+
},
|
42 |
+
{
|
43 |
+
"epoch": 2.0222446916076846,
|
44 |
+
"grad_norm": 0.2395874410867691,
|
45 |
+
"learning_rate": 3.9878542510121455e-05,
|
46 |
+
"loss": 0.0037,
|
47 |
+
"step": 1000
|
48 |
+
},
|
49 |
+
{
|
50 |
+
"epoch": 2.998988877654196,
|
51 |
+
"eval_accuracy": 0.9983575694624772,
|
52 |
+
"eval_f1": 0.9049904030710172,
|
53 |
+
"eval_loss": 0.006752336397767067,
|
54 |
+
"eval_precision": 0.8972407231208372,
|
55 |
+
"eval_recall": 0.9128751210067764,
|
56 |
+
"eval_runtime": 13.9972,
|
57 |
+
"eval_samples_per_second": 485.67,
|
58 |
+
"eval_steps_per_second": 60.727,
|
59 |
+
"step": 1483
|
60 |
+
},
|
61 |
+
{
|
62 |
+
"epoch": 3.033367037411527,
|
63 |
+
"grad_norm": 0.0013774348190054297,
|
64 |
+
"learning_rate": 3.481781376518219e-05,
|
65 |
+
"loss": 0.0021,
|
66 |
+
"step": 1500
|
67 |
+
},
|
68 |
+
{
|
69 |
+
"epoch": 4.0,
|
70 |
+
"eval_accuracy": 0.998338094001558,
|
71 |
+
"eval_f1": 0.9043805934997644,
|
72 |
+
"eval_loss": 0.006901361979544163,
|
73 |
+
"eval_precision": 0.8807339449541285,
|
74 |
+
"eval_recall": 0.9293320425943853,
|
75 |
+
"eval_runtime": 14.3886,
|
76 |
+
"eval_samples_per_second": 472.458,
|
77 |
+
"eval_steps_per_second": 59.075,
|
78 |
+
"step": 1978
|
79 |
+
},
|
80 |
+
{
|
81 |
+
"epoch": 4.044489383215369,
|
82 |
+
"grad_norm": 0.13544714450836182,
|
83 |
+
"learning_rate": 2.9757085020242914e-05,
|
84 |
+
"loss": 0.0012,
|
85 |
+
"step": 2000
|
86 |
+
},
|
87 |
+
{
|
88 |
+
"epoch": 4.998988877654196,
|
89 |
+
"eval_accuracy": 0.9984224876655414,
|
90 |
+
"eval_f1": 0.9041745730550285,
|
91 |
+
"eval_loss": 0.007279807701706886,
|
92 |
+
"eval_precision": 0.8865116279069768,
|
93 |
+
"eval_recall": 0.9225556631171346,
|
94 |
+
"eval_runtime": 14.0239,
|
95 |
+
"eval_samples_per_second": 484.743,
|
96 |
+
"eval_steps_per_second": 60.611,
|
97 |
+
"step": 2472
|
98 |
+
},
|
99 |
+
{
|
100 |
+
"epoch": 5.055611729019211,
|
101 |
+
"grad_norm": 0.001985458889976144,
|
102 |
+
"learning_rate": 2.4696356275303644e-05,
|
103 |
+
"loss": 0.0006,
|
104 |
+
"step": 2500
|
105 |
+
},
|
106 |
+
{
|
107 |
+
"epoch": 6.0,
|
108 |
+
"eval_accuracy": 0.9984354713061543,
|
109 |
+
"eval_f1": 0.9118483412322275,
|
110 |
+
"eval_loss": 0.0077171181328594685,
|
111 |
+
"eval_precision": 0.89322191272052,
|
112 |
+
"eval_recall": 0.9312681510164569,
|
113 |
+
"eval_runtime": 14.0472,
|
114 |
+
"eval_samples_per_second": 483.939,
|
115 |
+
"eval_steps_per_second": 60.51,
|
116 |
+
"step": 2967
|
117 |
+
},
|
118 |
+
{
|
119 |
+
"epoch": 6.066734074823054,
|
120 |
+
"grad_norm": 0.015543761663138866,
|
121 |
+
"learning_rate": 1.9635627530364373e-05,
|
122 |
+
"loss": 0.0004,
|
123 |
+
"step": 3000
|
124 |
+
},
|
125 |
+
{
|
126 |
+
"epoch": 6.998988877654196,
|
127 |
+
"eval_accuracy": 0.998526356790444,
|
128 |
+
"eval_f1": 0.9123809523809524,
|
129 |
+
"eval_loss": 0.0071807485073804855,
|
130 |
+
"eval_precision": 0.8978444236176195,
|
131 |
+
"eval_recall": 0.9273959341723137,
|
132 |
+
"eval_runtime": 14.0553,
|
133 |
+
"eval_samples_per_second": 483.66,
|
134 |
+
"eval_steps_per_second": 60.475,
|
135 |
+
"step": 3461
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 7.077856420626896,
|
139 |
+
"grad_norm": 0.0003612766449805349,
|
140 |
+
"learning_rate": 1.4574898785425101e-05,
|
141 |
+
"loss": 0.0004,
|
142 |
+
"step": 3500
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"epoch": 8.0,
|
146 |
+
"eval_accuracy": 0.9985847831732018,
|
147 |
+
"eval_f1": 0.9133171912832929,
|
148 |
+
"eval_loss": 0.007767966017127037,
|
149 |
+
"eval_precision": 0.9137596899224806,
|
150 |
+
"eval_recall": 0.9128751210067764,
|
151 |
+
"eval_runtime": 14.0606,
|
152 |
+
"eval_samples_per_second": 483.479,
|
153 |
+
"eval_steps_per_second": 60.453,
|
154 |
+
"step": 3956
|
155 |
+
},
|
156 |
+
{
|
157 |
+
"epoch": 8.088978766430738,
|
158 |
+
"grad_norm": 0.0004361484607215971,
|
159 |
+
"learning_rate": 9.51417004048583e-06,
|
160 |
+
"loss": 0.0001,
|
161 |
+
"step": 4000
|
162 |
+
},
|
163 |
+
{
|
164 |
+
"epoch": 8.998988877654195,
|
165 |
+
"eval_accuracy": 0.9985523240716697,
|
166 |
+
"eval_f1": 0.9138431752178122,
|
167 |
+
"eval_loss": 0.00841750018298626,
|
168 |
+
"eval_precision": 0.9138431752178122,
|
169 |
+
"eval_recall": 0.9138431752178122,
|
170 |
+
"eval_runtime": 14.3137,
|
171 |
+
"eval_samples_per_second": 474.93,
|
172 |
+
"eval_steps_per_second": 59.384,
|
173 |
+
"step": 4450
|
174 |
+
},
|
175 |
+
{
|
176 |
+
"epoch": 9.100101112234581,
|
177 |
+
"grad_norm": 0.00019355813856236637,
|
178 |
+
"learning_rate": 4.453441295546559e-06,
|
179 |
+
"loss": 0.0001,
|
180 |
+
"step": 4500
|
181 |
+
},
|
182 |
+
{
|
183 |
+
"epoch": 9.989888776541962,
|
184 |
+
"eval_accuracy": 0.9985198649701377,
|
185 |
+
"eval_f1": 0.9140096618357488,
|
186 |
+
"eval_loss": 0.008521749638020992,
|
187 |
+
"eval_precision": 0.9122468659594986,
|
188 |
+
"eval_recall": 0.9157792836398838,
|
189 |
+
"eval_runtime": 14.4488,
|
190 |
+
"eval_samples_per_second": 470.491,
|
191 |
+
"eval_steps_per_second": 58.829,
|
192 |
+
"step": 4940
|
193 |
+
},
|
194 |
+
{
|
195 |
+
"epoch": 9.989888776541962,
|
196 |
+
"step": 4940,
|
197 |
+
"total_flos": 1.7928149517546354e+16,
|
198 |
+
"train_loss": 0.002201772875978276,
|
199 |
+
"train_runtime": 1511.1925,
|
200 |
+
"train_samples_per_second": 209.232,
|
201 |
+
"train_steps_per_second": 3.269
|
202 |
+
}
|
203 |
+
],
|
204 |
+
"logging_steps": 500,
|
205 |
+
"max_steps": 4940,
|
206 |
+
"num_input_tokens_seen": 0,
|
207 |
+
"num_train_epochs": 10,
|
208 |
+
"save_steps": 500,
|
209 |
+
"stateful_callbacks": {
|
210 |
+
"TrainerControl": {
|
211 |
+
"args": {
|
212 |
+
"should_epoch_stop": false,
|
213 |
+
"should_evaluate": false,
|
214 |
+
"should_log": false,
|
215 |
+
"should_save": true,
|
216 |
+
"should_training_stop": true
|
217 |
+
},
|
218 |
+
"attributes": {}
|
219 |
+
}
|
220 |
+
},
|
221 |
+
"total_flos": 1.7928149517546354e+16,
|
222 |
+
"train_batch_size": 32,
|
223 |
+
"trial_name": null,
|
224 |
+
"trial_params": null
|
225 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:13556e6c97b2f39e25d5830ab0bc61ce81f807bcf643d150d23dd97c2f606c57
|
3 |
+
size 5240
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|