Model save
Browse files
README.md
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: apache-2.0
|
4 |
+
base_model: microsoft/swinv2-tiny-patch4-window8-256
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
model-index:
|
10 |
+
- name: swinv2-tiny-patch4-window8-256-dmae-humeda-DAV47
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# swinv2-tiny-patch4-window8-256-dmae-humeda-DAV47
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [microsoft/swinv2-tiny-patch4-window8-256](https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256) on an unknown dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.9284
|
22 |
+
- Accuracy: 0.75
|
23 |
+
|
24 |
+
## Model description
|
25 |
+
|
26 |
+
More information needed
|
27 |
+
|
28 |
+
## Intended uses & limitations
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Training and evaluation data
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training procedure
|
37 |
+
|
38 |
+
### Training hyperparameters
|
39 |
+
|
40 |
+
The following hyperparameters were used during training:
|
41 |
+
- learning_rate: 3e-05
|
42 |
+
- train_batch_size: 32
|
43 |
+
- eval_batch_size: 32
|
44 |
+
- seed: 42
|
45 |
+
- gradient_accumulation_steps: 4
|
46 |
+
- total_train_batch_size: 128
|
47 |
+
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
48 |
+
- lr_scheduler_type: cosine_with_restarts
|
49 |
+
- lr_scheduler_warmup_ratio: 0.1
|
50 |
+
- num_epochs: 40
|
51 |
+
- mixed_precision_training: Native AMP
|
52 |
+
|
53 |
+
### Training results
|
54 |
+
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
56 |
+
|:-------------:|:-------:|:----:|:---------------:|:--------:|
|
57 |
+
| No log | 0.9412 | 8 | 1.5602 | 0.3409 |
|
58 |
+
| 1.6237 | 1.9412 | 16 | 1.3767 | 0.4432 |
|
59 |
+
| 1.4913 | 2.9412 | 24 | 1.3316 | 0.6136 |
|
60 |
+
| 1.4913 | 3.9412 | 32 | 1.0605 | 0.6591 |
|
61 |
+
| 1.2218 | 4.9412 | 40 | 0.9235 | 0.6932 |
|
62 |
+
| 0.9148 | 5.9412 | 48 | 0.8240 | 0.75 |
|
63 |
+
| 0.9148 | 6.9412 | 56 | 0.7359 | 0.6932 |
|
64 |
+
| 0.7686 | 7.9412 | 64 | 0.7190 | 0.6932 |
|
65 |
+
| 0.6291 | 8.9412 | 72 | 0.6824 | 0.7273 |
|
66 |
+
| 0.6291 | 9.9412 | 80 | 0.7034 | 0.7614 |
|
67 |
+
| 0.5546 | 10.9412 | 88 | 0.6911 | 0.7727 |
|
68 |
+
| 0.4494 | 11.9412 | 96 | 0.6893 | 0.75 |
|
69 |
+
| 0.4494 | 12.9412 | 104 | 0.6927 | 0.7727 |
|
70 |
+
| 0.3719 | 13.9412 | 112 | 0.7180 | 0.7955 |
|
71 |
+
| 0.3478 | 14.9412 | 120 | 0.7574 | 0.7159 |
|
72 |
+
| 0.3478 | 15.9412 | 128 | 0.7665 | 0.7159 |
|
73 |
+
| 0.3212 | 16.9412 | 136 | 0.8369 | 0.7386 |
|
74 |
+
| 0.3184 | 17.9412 | 144 | 0.7906 | 0.7159 |
|
75 |
+
| 0.3184 | 18.9412 | 152 | 0.8438 | 0.7273 |
|
76 |
+
| 0.2873 | 19.9412 | 160 | 0.8233 | 0.7273 |
|
77 |
+
| 0.2553 | 20.9412 | 168 | 0.8062 | 0.7386 |
|
78 |
+
| 0.2553 | 21.9412 | 176 | 0.8711 | 0.7159 |
|
79 |
+
| 0.2373 | 22.9412 | 184 | 0.8673 | 0.7386 |
|
80 |
+
| 0.2208 | 23.9412 | 192 | 0.8600 | 0.7273 |
|
81 |
+
| 0.2208 | 24.9412 | 200 | 0.8984 | 0.7159 |
|
82 |
+
| 0.2353 | 25.9412 | 208 | 0.8848 | 0.7273 |
|
83 |
+
| 0.2187 | 26.9412 | 216 | 0.8569 | 0.75 |
|
84 |
+
| 0.2187 | 27.9412 | 224 | 0.8817 | 0.7386 |
|
85 |
+
| 0.1943 | 28.9412 | 232 | 0.8949 | 0.75 |
|
86 |
+
| 0.1926 | 29.9412 | 240 | 0.9077 | 0.7159 |
|
87 |
+
| 0.1926 | 30.9412 | 248 | 0.9200 | 0.7159 |
|
88 |
+
| 0.1816 | 31.9412 | 256 | 0.9233 | 0.7386 |
|
89 |
+
| 0.1744 | 32.9412 | 264 | 0.9231 | 0.7386 |
|
90 |
+
| 0.1744 | 33.9412 | 272 | 0.9329 | 0.7273 |
|
91 |
+
| 0.1718 | 34.9412 | 280 | 0.9277 | 0.7386 |
|
92 |
+
| 0.1701 | 35.9412 | 288 | 0.9258 | 0.75 |
|
93 |
+
| 0.1701 | 36.9412 | 296 | 0.9262 | 0.75 |
|
94 |
+
| 0.1921 | 37.9412 | 304 | 0.9274 | 0.75 |
|
95 |
+
| 0.161 | 38.9412 | 312 | 0.9282 | 0.75 |
|
96 |
+
| 0.161 | 39.9412 | 320 | 0.9284 | 0.75 |
|
97 |
+
|
98 |
+
|
99 |
+
### Framework versions
|
100 |
+
|
101 |
+
- Transformers 4.48.2
|
102 |
+
- Pytorch 2.5.1+cu124
|
103 |
+
- Datasets 3.2.0
|
104 |
+
- Tokenizers 0.21.0
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 110359372
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7fe4c4c212d78505b9d3e4786d64fb6e337556229ff6d811d136b35e4905d538
|
3 |
size 110359372
|
runs/Feb06_23-21-47_ca55b56726ae/events.out.tfevents.1738884122.ca55b56726ae.7717.0
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f830549b0b95a189708bd918654824b727f5f1d521bd3c24a641ad79e239aeea
|
3 |
+
size 24374
|