RobertoSonic commited on
Commit
457d296
·
verified ·
1 Parent(s): 8a69268

Model save

Browse files
README.md ADDED
@@ -0,0 +1,104 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: apache-2.0
4
+ base_model: microsoft/swinv2-tiny-patch4-window8-256
5
+ tags:
6
+ - generated_from_trainer
7
+ metrics:
8
+ - accuracy
9
+ model-index:
10
+ - name: swinv2-tiny-patch4-window8-256-dmae-humeda-DAV47
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # swinv2-tiny-patch4-window8-256-dmae-humeda-DAV47
18
+
19
+ This model is a fine-tuned version of [microsoft/swinv2-tiny-patch4-window8-256](https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256) on an unknown dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 0.9284
22
+ - Accuracy: 0.75
23
+
24
+ ## Model description
25
+
26
+ More information needed
27
+
28
+ ## Intended uses & limitations
29
+
30
+ More information needed
31
+
32
+ ## Training and evaluation data
33
+
34
+ More information needed
35
+
36
+ ## Training procedure
37
+
38
+ ### Training hyperparameters
39
+
40
+ The following hyperparameters were used during training:
41
+ - learning_rate: 3e-05
42
+ - train_batch_size: 32
43
+ - eval_batch_size: 32
44
+ - seed: 42
45
+ - gradient_accumulation_steps: 4
46
+ - total_train_batch_size: 128
47
+ - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
48
+ - lr_scheduler_type: cosine_with_restarts
49
+ - lr_scheduler_warmup_ratio: 0.1
50
+ - num_epochs: 40
51
+ - mixed_precision_training: Native AMP
52
+
53
+ ### Training results
54
+
55
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
56
+ |:-------------:|:-------:|:----:|:---------------:|:--------:|
57
+ | No log | 0.9412 | 8 | 1.5602 | 0.3409 |
58
+ | 1.6237 | 1.9412 | 16 | 1.3767 | 0.4432 |
59
+ | 1.4913 | 2.9412 | 24 | 1.3316 | 0.6136 |
60
+ | 1.4913 | 3.9412 | 32 | 1.0605 | 0.6591 |
61
+ | 1.2218 | 4.9412 | 40 | 0.9235 | 0.6932 |
62
+ | 0.9148 | 5.9412 | 48 | 0.8240 | 0.75 |
63
+ | 0.9148 | 6.9412 | 56 | 0.7359 | 0.6932 |
64
+ | 0.7686 | 7.9412 | 64 | 0.7190 | 0.6932 |
65
+ | 0.6291 | 8.9412 | 72 | 0.6824 | 0.7273 |
66
+ | 0.6291 | 9.9412 | 80 | 0.7034 | 0.7614 |
67
+ | 0.5546 | 10.9412 | 88 | 0.6911 | 0.7727 |
68
+ | 0.4494 | 11.9412 | 96 | 0.6893 | 0.75 |
69
+ | 0.4494 | 12.9412 | 104 | 0.6927 | 0.7727 |
70
+ | 0.3719 | 13.9412 | 112 | 0.7180 | 0.7955 |
71
+ | 0.3478 | 14.9412 | 120 | 0.7574 | 0.7159 |
72
+ | 0.3478 | 15.9412 | 128 | 0.7665 | 0.7159 |
73
+ | 0.3212 | 16.9412 | 136 | 0.8369 | 0.7386 |
74
+ | 0.3184 | 17.9412 | 144 | 0.7906 | 0.7159 |
75
+ | 0.3184 | 18.9412 | 152 | 0.8438 | 0.7273 |
76
+ | 0.2873 | 19.9412 | 160 | 0.8233 | 0.7273 |
77
+ | 0.2553 | 20.9412 | 168 | 0.8062 | 0.7386 |
78
+ | 0.2553 | 21.9412 | 176 | 0.8711 | 0.7159 |
79
+ | 0.2373 | 22.9412 | 184 | 0.8673 | 0.7386 |
80
+ | 0.2208 | 23.9412 | 192 | 0.8600 | 0.7273 |
81
+ | 0.2208 | 24.9412 | 200 | 0.8984 | 0.7159 |
82
+ | 0.2353 | 25.9412 | 208 | 0.8848 | 0.7273 |
83
+ | 0.2187 | 26.9412 | 216 | 0.8569 | 0.75 |
84
+ | 0.2187 | 27.9412 | 224 | 0.8817 | 0.7386 |
85
+ | 0.1943 | 28.9412 | 232 | 0.8949 | 0.75 |
86
+ | 0.1926 | 29.9412 | 240 | 0.9077 | 0.7159 |
87
+ | 0.1926 | 30.9412 | 248 | 0.9200 | 0.7159 |
88
+ | 0.1816 | 31.9412 | 256 | 0.9233 | 0.7386 |
89
+ | 0.1744 | 32.9412 | 264 | 0.9231 | 0.7386 |
90
+ | 0.1744 | 33.9412 | 272 | 0.9329 | 0.7273 |
91
+ | 0.1718 | 34.9412 | 280 | 0.9277 | 0.7386 |
92
+ | 0.1701 | 35.9412 | 288 | 0.9258 | 0.75 |
93
+ | 0.1701 | 36.9412 | 296 | 0.9262 | 0.75 |
94
+ | 0.1921 | 37.9412 | 304 | 0.9274 | 0.75 |
95
+ | 0.161 | 38.9412 | 312 | 0.9282 | 0.75 |
96
+ | 0.161 | 39.9412 | 320 | 0.9284 | 0.75 |
97
+
98
+
99
+ ### Framework versions
100
+
101
+ - Transformers 4.48.2
102
+ - Pytorch 2.5.1+cu124
103
+ - Datasets 3.2.0
104
+ - Tokenizers 0.21.0
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:1ed60149777b421f9631c1bd8f448c4dcf8ae32cadbd3bcbf724546dd3f4c0ac
3
  size 110359372
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7fe4c4c212d78505b9d3e4786d64fb6e337556229ff6d811d136b35e4905d538
3
  size 110359372
runs/Feb06_23-21-47_ca55b56726ae/events.out.tfevents.1738884122.ca55b56726ae.7717.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:eccc5efb84a661f4762ebfef93522ccd850da3a3258dedce218fa574b472d3ed
3
- size 23697
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f830549b0b95a189708bd918654824b727f5f1d521bd3c24a641ad79e239aeea
3
+ size 24374