verbalex-ar / README.md
RitchieP's picture
Upload tokenizer
c976cb7 verified
metadata
license: apache-2.0
tags:
  - generated_from_trainer
base_model: openai/whisper-small
datasets:
  - verba_lex_voice
metrics:
  - wer
model-index:
  - name: verbalex-ar
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: verba_lex_voice
          type: verba_lex_voice
          config: ar
          split: test
          args: ar
        metrics:
          - type: wer
            value: 3.481475113900111
            name: Wer

verbalex-ar

This model is a fine-tuned version of openai/whisper-small on the verba_lex_voice dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0880
  • Wer: 3.4815

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0015 5.2356 1000 0.0809 3.6620
0.0002 10.4712 2000 0.0845 3.5073
0.0001 15.7068 3000 0.0865 3.5245
0.0001 20.9424 4000 0.0877 3.5073
0.0001 26.1780 5000 0.0880 3.4815

Framework versions

  • Transformers 4.40.2
  • Pytorch 2.1.2
  • Datasets 2.16.0
  • Tokenizers 0.19.1