uploaded readme
Browse files
README.md
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Quantization made by Richard Erkhov.
|
2 |
+
|
3 |
+
[Github](https://github.com/RichardErkhov)
|
4 |
+
|
5 |
+
[Discord](https://discord.gg/pvy7H8DZMG)
|
6 |
+
|
7 |
+
[Request more models](https://github.com/RichardErkhov/quant_request)
|
8 |
+
|
9 |
+
|
10 |
+
tiny_starcoder_py - bnb 8bits
|
11 |
+
- Model creator: https://huggingface.co/bigcode/
|
12 |
+
- Original model: https://huggingface.co/bigcode/tiny_starcoder_py/
|
13 |
+
|
14 |
+
|
15 |
+
|
16 |
+
|
17 |
+
Original model description:
|
18 |
+
---
|
19 |
+
pipeline_tag: text-generation
|
20 |
+
inference: true
|
21 |
+
widget:
|
22 |
+
- text: 'def print_hello_world():'
|
23 |
+
example_title: Hello world
|
24 |
+
group: Python
|
25 |
+
license: bigcode-openrail-m
|
26 |
+
datasets:
|
27 |
+
- bigcode/the-stack-dedup
|
28 |
+
metrics:
|
29 |
+
- code_eval
|
30 |
+
library_name: transformers
|
31 |
+
tags:
|
32 |
+
- code
|
33 |
+
model-index:
|
34 |
+
- name: Tiny-StarCoder-Py
|
35 |
+
results:
|
36 |
+
- task:
|
37 |
+
type: text-generation
|
38 |
+
dataset:
|
39 |
+
type: openai_humaneval
|
40 |
+
name: HumanEval
|
41 |
+
metrics:
|
42 |
+
- name: pass@1
|
43 |
+
type: pass@1
|
44 |
+
value: 7.84%
|
45 |
+
verified: false
|
46 |
+
---
|
47 |
+
|
48 |
+
# TinyStarCoderPy
|
49 |
+
|
50 |
+
This is a 164M parameters model with the same architecture as [StarCoder](https://huggingface.co/bigcode/starcoder) (8k context length, MQA & FIM). It was trained on the Python data from [StarCoderData](https://huggingface.co/datasets/bigcode/starcoderdata)
|
51 |
+
for ~6 epochs which amounts to 100B tokens.
|
52 |
+
|
53 |
+
|
54 |
+
## Use
|
55 |
+
|
56 |
+
### Intended use
|
57 |
+
|
58 |
+
The model was trained on GitHub code, to assist with some tasks like [Assisted Generation](https://huggingface.co/blog/assisted-generation). For pure code completion, we advise using our 15B models [StarCoder]() or [StarCoderBase]().
|
59 |
+
|
60 |
+
|
61 |
+
### Generation
|
62 |
+
```python
|
63 |
+
# pip install -q transformers
|
64 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
65 |
+
|
66 |
+
checkpoint = "bigcode/tiny_starcoder_py"
|
67 |
+
device = "cuda" # for GPU usage or "cpu" for CPU usage
|
68 |
+
|
69 |
+
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
|
70 |
+
model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device)
|
71 |
+
|
72 |
+
inputs = tokenizer.encode("def print_hello_world():", return_tensors="pt").to(device)
|
73 |
+
outputs = model.generate(inputs)
|
74 |
+
print(tokenizer.decode(outputs[0]))
|
75 |
+
```
|
76 |
+
|
77 |
+
### Fill-in-the-middle
|
78 |
+
Fill-in-the-middle uses special tokens to identify the prefix/middle/suffix part of the input and output:
|
79 |
+
|
80 |
+
```python
|
81 |
+
input_text = "<fim_prefix>def print_one_two_three():\n print('one')\n <fim_suffix>\n print('three')<fim_middle>"
|
82 |
+
inputs = tokenizer.encode(input_text, return_tensors="pt").to(device)
|
83 |
+
outputs = model.generate(inputs)
|
84 |
+
print(tokenizer.decode(outputs[0]))
|
85 |
+
```
|
86 |
+
|
87 |
+
# Training
|
88 |
+
|
89 |
+
## Model
|
90 |
+
|
91 |
+
- **Architecture:** GPT-2 model with multi-query attention and Fill-in-the-Middle objective
|
92 |
+
- **Pretraining steps:** 50k
|
93 |
+
- **Pretraining tokens:** 100 billion
|
94 |
+
- **Precision:** bfloat16
|
95 |
+
|
96 |
+
## Hardware
|
97 |
+
|
98 |
+
- **GPUs:** 32 Tesla A100
|
99 |
+
- **Training time:** 18 hours
|
100 |
+
|
101 |
+
## Software
|
102 |
+
|
103 |
+
- **Orchestration:** [Megatron-LM](https://github.com/bigcode-project/Megatron-LM)
|
104 |
+
- **Neural networks:** [PyTorch](https://github.com/pytorch/pytorch)
|
105 |
+
- **BP16 if applicable:** [apex](https://github.com/NVIDIA/apex)
|
106 |
+
|
107 |
+
# License
|
108 |
+
The model is licensed under the BigCode OpenRAIL-M v1 license agreement. You can find the full agreement [here](https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement).
|
109 |
+
|
110 |
+
|