RichardErkhov's picture
uploaded readme
40ffc86 verified

Quantization made by Richard Erkhov.

Github

Discord

Request more models

TinyLlama-1.1B-intermediate-step-955k-token-2T - GGUF

Name Quant method Size
TinyLlama-1.1B-intermediate-step-955k-token-2T.Q2_K.gguf Q2_K 0.4GB
TinyLlama-1.1B-intermediate-step-955k-token-2T.IQ3_XS.gguf IQ3_XS 0.44GB
TinyLlama-1.1B-intermediate-step-955k-token-2T.IQ3_S.gguf IQ3_S 0.47GB
TinyLlama-1.1B-intermediate-step-955k-token-2T.Q3_K_S.gguf Q3_K_S 0.47GB
TinyLlama-1.1B-intermediate-step-955k-token-2T.IQ3_M.gguf IQ3_M 0.48GB
TinyLlama-1.1B-intermediate-step-955k-token-2T.Q3_K.gguf Q3_K 0.51GB
TinyLlama-1.1B-intermediate-step-955k-token-2T.Q3_K_M.gguf Q3_K_M 0.51GB
TinyLlama-1.1B-intermediate-step-955k-token-2T.Q3_K_L.gguf Q3_K_L 0.55GB
TinyLlama-1.1B-intermediate-step-955k-token-2T.IQ4_XS.gguf IQ4_XS 0.57GB
TinyLlama-1.1B-intermediate-step-955k-token-2T.Q4_0.gguf Q4_0 0.59GB
TinyLlama-1.1B-intermediate-step-955k-token-2T.IQ4_NL.gguf IQ4_NL 0.6GB
TinyLlama-1.1B-intermediate-step-955k-token-2T.Q4_K_S.gguf Q4_K_S 0.6GB
TinyLlama-1.1B-intermediate-step-955k-token-2T.Q4_K.gguf Q4_K 0.62GB
TinyLlama-1.1B-intermediate-step-955k-token-2T.Q4_K_M.gguf Q4_K_M 0.62GB
TinyLlama-1.1B-intermediate-step-955k-token-2T.Q4_1.gguf Q4_1 0.65GB
TinyLlama-1.1B-intermediate-step-955k-token-2T.Q5_0.gguf Q5_0 0.71GB
TinyLlama-1.1B-intermediate-step-955k-token-2T.Q5_K_S.gguf Q5_K_S 0.71GB
TinyLlama-1.1B-intermediate-step-955k-token-2T.Q5_K.gguf Q5_K 0.73GB
TinyLlama-1.1B-intermediate-step-955k-token-2T.Q5_K_M.gguf Q5_K_M 0.73GB
TinyLlama-1.1B-intermediate-step-955k-token-2T.Q5_1.gguf Q5_1 0.77GB
TinyLlama-1.1B-intermediate-step-955k-token-2T.Q6_K.gguf Q6_K 0.84GB
TinyLlama-1.1B-intermediate-step-955k-token-2T.Q8_0.gguf Q8_0 1.09GB

Original model description:

license: apache-2.0 datasets: - cerebras/SlimPajama-627B - bigcode/starcoderdata language: - en

TinyLlama-1.1B

https://github.com/jzhang38/TinyLlama

The TinyLlama project aims to pretrain a 1.1B Llama model on 3 trillion tokens. With some proper optimization, we can achieve this within a span of "just" 90 days using 16 A100-40G GPUs πŸš€πŸš€. The training has started on 2023-09-01.

We adopted exactly the same architecture and tokenizer as Llama 2. This means TinyLlama can be plugged and played in many open-source projects built upon Llama. Besides, TinyLlama is compact with only 1.1B parameters. This compactness allows it to cater to a multitude of applications demanding a restricted computation and memory footprint.

This Model

This is an intermediate checkpoint with 995K steps and 2003B tokens.

Releases Schedule

We will be rolling out intermediate checkpoints following the below schedule. We also include some baseline models for comparison.

Date HF Checkpoint Tokens Step HellaSwag Acc_norm
Baseline StableLM-Alpha-3B 800B -- 38.31
Baseline Pythia-1B-intermediate-step-50k-105b 105B 50k 42.04
Baseline Pythia-1B 300B 143k 47.16
2023-09-04 TinyLlama-1.1B-intermediate-step-50k-105b 105B 50k 43.50
2023-09-16 -- 500B -- --
2023-10-01 -- 1T -- --
2023-10-16 -- 1.5T -- --
2023-10-31 -- 2T -- --
2023-11-15 -- 2.5T -- --
2023-12-01 -- 3T -- --

How to use

You will need the transformers>=4.31 Do check the TinyLlama github page for more information.

from transformers import AutoTokenizer
import transformers 
import torch
model = "TinyLlama/TinyLlama-1.1B-intermediate-step-955k-token-2T"
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

sequences = pipeline(
    'The TinyLlama project aims to pretrain a 1.1B Llama model on 3 trillion tokens. With some proper optimization, we can achieve this within a span of "just" 90 days using 16 A100-40G GPUs πŸš€πŸš€. The training has started on 2023-09-01.',
    do_sample=True,
    top_k=10,
    num_return_sequences=1,
    repetition_penalty=1.5,
    eos_token_id=tokenizer.eos_token_id,
    max_length=500,
)
for seq in sequences:
    print(f"Result: {seq['generated_text']}")