|
--- |
|
language: |
|
- en |
|
--- |
|
|
|
# MiniCPM-Visual-Embedding: An OCR-free Visual-Based Document Embedding Model Based on MiniCPM-V-2.0 as Your Personal Librarian |
|
|
|
With MiniCPM-Visual-Embedding, it is possible to directly build knowledge base with raw PDF/Book/Document without any OCR technique nor OCR pipeline. The model only takes images as document-side inputs and produce vectors representing document pages. |
|
|
|
[Github Repo](https://github.com/bokesyo/minicpm-visual-embedding) |
|
|
|
|
|
 |
|
|
|
# News |
|
|
|
- 2024-06-27: We released our first visual embedding model minicpm-visual-embedding-v0.1 on [huggingface](https://huggingface.co/RhapsodyAI/minicpm-visual-embedding-v0.1). |
|
|
|
- 2024-05-08: We [committed](https://github.com/bokesyo/minicpm-visual-embedding) our training code (full-parameter tuning with GradCache and DeepSpeed, supports large batch size across multiple GPUs with zero-stage1) and eval code. |
|
|
|
# Get started |
|
|
|
First you are suggested to git clone this huggingface repo or download repo with `huggingface_cli`. |
|
|
|
```bash |
|
git lfs install |
|
git clone https://huggingface.co/RhapsodyAI/minicpm-visual-embedding-v0.1 |
|
``` |
|
|
|
or |
|
|
|
```bash |
|
huggingface-cli download RhapsodyAI/minicpm-visual-embedding-v0.1 |
|
``` |
|
|
|
```python |
|
from transformers import AutoModel |
|
from transformers import AutoTokenizer |
|
from PIL import Image |
|
import torch |
|
|
|
device = 'cuda:0' |
|
|
|
def last_token_pool(last_hidden_states: Tensor, |
|
attention_mask: Tensor) -> Tensor: |
|
left_padding = (attention_mask[:, -1].sum() == attention_mask.shape[0]) |
|
if left_padding: |
|
return last_hidden_states[:, -1] |
|
else: |
|
sequence_lengths = attention_mask.sum(dim=1) - 1 |
|
batch_size = last_hidden_states.shape[0] |
|
return last_hidden_states[torch.arange(batch_size, device=last_hidden_states.device), sequence_lengths] |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained('/local/path/to/minicpm-visual-embedding-v0.1') |
|
model = AutoModel.from_pretrained('/local/path/to/minicpm-visual-embedding-v0.1') |
|
|
|
image_1 = Image.open('/local/path/to/document1.png').convert('RGB') |
|
image_2 = Image.open('/local/path/to/document2.png').convert('RGB') |
|
|
|
query_instruction = 'Represent this query for retrieving relavant document: ' |
|
|
|
query = 'Who was elected as president of United States in 2020?' |
|
|
|
query_full = query_instruction + query |
|
|
|
# Embed text queries |
|
q_outputs = model(text=[query_full], image=[None, None], tokenizer=tokenizer) # [B, s, d] |
|
q_reps = last_token_pool(q_outputs.last_hidden_state, q_outputs.attention_mask) # [B, d] |
|
|
|
# Embed image documents |
|
p_outputs = model(text=['', ''], image=[image_1, image_2], tokenizer=tokenizer) # [B, s, d] |
|
p_reps = last_token_pool(p_outputs.last_hidden_state, p_outputs.attention_mask) # [B, d] |
|
|
|
# Calculate similarities |
|
scores = torch.matmul(q_reps, p_reps) |
|
|
|
print(scores) |
|
|
|
``` |
|
|