Higgs_Codec_Extended / train_boson_mixed_precision.py
Respair's picture
Update train_boson_mixed_precision.py
1b8ddf6 verified
import os
import json
import argparse
import random
from pathlib import Path
from datetime import datetime
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.data import Dataset, DataLoader
from torch.utils.data.distributed import DistributedSampler
from torch.utils.tensorboard import SummaryWriter
from torch.cuda.amp import autocast, GradScaler
import torchaudio
import librosa
from tqdm import tqdm
from audiotools import AudioSignal, STFTParams
from higgs_audio_tokenizer import HiggsAudioTokenizer
from quantization.distrib import broadcast_tensors, sync_buffer, is_distributed, world_size, rank
from quantization.ddp_utils import set_random_seed, is_logging_process, get_timestamp
import sys
sys.path.append('.')
from loss import L1Loss, MultiScaleSTFTLoss, MelSpectrogramLoss, GANLoss
from discriminator import Discriminator
class CosineWarmupScheduler(torch.optim.lr_scheduler._LRScheduler):
"""Cosine scheduler with linear warmup"""
def __init__(self, optimizer, warmup_steps, total_steps, eta_min=1e-6, last_epoch=-1):
self.warmup_steps = warmup_steps
self.total_steps = total_steps
self.eta_min = eta_min
super().__init__(optimizer, last_epoch)
def get_lr(self):
if self.last_epoch < self.warmup_steps:
# Linear warmup
warmup_factor = self.last_epoch / self.warmup_steps
return [base_lr * warmup_factor for base_lr in self.base_lrs]
else:
# Cosine annealing
progress = (self.last_epoch - self.warmup_steps) / (self.total_steps - self.warmup_steps)
cosine_factor = 0.5 * (1 + np.cos(np.pi * progress))
return [self.eta_min + (base_lr - self.eta_min) * cosine_factor for base_lr in self.base_lrs]
class AudioDataset(Dataset):
"""Dataset for loading audio files from CSV"""
def __init__(self, csv_path, sample_rate=24000, segment_duration=2.0, is_train=True):
self.df = pd.read_csv(csv_path)
self.sample_rate = sample_rate
self.segment_duration = segment_duration
self.segment_length = int(sample_rate * segment_duration)
self.is_train = is_train
# Filter out files that don't exist
valid_files = []
for idx, row in self.df.iterrows():
if os.path.exists(row.iloc[0]):
valid_files.append(row.iloc[0])
self.audio_paths = valid_files
print(f"Found {len(self.audio_paths)} valid audio files")
def __len__(self):
return len(self.audio_paths)
def __getitem__(self, idx):
audio_path = self.audio_paths[idx]
try:
audio, sr = librosa.load(audio_path, sr=self.sample_rate, mono=True)
=
if len(audio) > self.segment_length:
if self.is_train:
start = random.randint(0, len(audio) - self.segment_length)
else:
start = 0 =
audio = audio[start:start + self.segment_length]
else:
# Pad if too short
audio = np.pad(audio, (0, self.segment_length - len(audio)))
audio_tensor = torch.FloatTensor(audio).unsqueeze(0)
return audio_tensor, audio_path
except Exception as e:
print(f"Error loading {audio_path}: {e}")
# Return silence if loading fails
return torch.zeros(1, self.segment_length), audio_path
class BosonTrainer:
def __init__(self, args):
self.args = args
self.distributed = False
# Check if we're in a distributed environment
if 'WORLD_SIZE' in os.environ and int(os.environ['WORLD_SIZE']) > 1:
self.distributed = True
self.setup_ddp()
self.device = torch.device(f'cuda:{args.local_rank}')
else:
# Single GPU mode
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
torch.cuda.set_device(0)
set_random_seed(args.seed)
# Load config
with open(args.config, 'r') as f:
self.config = json.load(f)
# Initialize models
self.model = self.build_model()
self.discriminator = self.build_discriminator() if args.use_discriminator else None
# Setup data loaders
self.train_loader, self.val_loader = self.setup_data_loaders()
# Setup optimizers
self.optimizer_g = torch.optim.AdamW(
self.model.parameters(),
lr=args.learning_rate,
betas=(0.5, 0.9),
weight_decay=args.weight_decay
)
if self.discriminator is not None:
self.optimizer_d = torch.optim.AdamW(
self.discriminator.parameters(),
lr=args.learning_rate * 2, # Typically discriminator learns faster
betas=(0.5, 0.9),
weight_decay=args.weight_decay
)
# Initialize gradient scalers for mixed precision
if args.use_mixed_precision:
self.scaler_g = GradScaler()
self.scaler_d = GradScaler() if self.discriminator is not None else None
else:
self.scaler_g = None
self.scaler_d = None
# Calculate total training steps
self.total_steps = args.num_epochs * len(self.train_loader)
# Setup schedulers with warmup
self.scheduler_g = CosineWarmupScheduler(
self.optimizer_g,
warmup_steps=args.warmup_steps,
total_steps=self.total_steps,
eta_min=1e-6
)
if self.discriminator is not None:
self.scheduler_d = CosineWarmupScheduler(
self.optimizer_d,
warmup_steps=args.warmup_steps,
total_steps=self.total_steps,
eta_min=1e-6
)
# Setup losses
self.setup_losses()
# Setup tensorboard
if not self.distributed or rank() == 0:
self.writer = SummaryWriter(
log_dir=os.path.join(args.output_dir, 'logs', get_timestamp())
)
self.global_step = 0
self.start_epoch = 0
# Load checkpoint if exists
if args.resume:
self.load_checkpoint()
def setup_ddp(self):
"""Initialize DDP"""
if 'LOCAL_RANK' in os.environ:
self.args.local_rank = int(os.environ['LOCAL_RANK'])
dist.init_process_group(backend='nccl')
torch.cuda.set_device(self.args.local_rank)
set_random_seed(self.args.seed + rank())
def build_model(self):
"""Build and wrap model with DDP if needed"""
print(self.config)
model = HiggsAudioTokenizer(
n_filters=self.config['n_filters'],
D=self.config['D'],
target_bandwidths=self.config['target_bandwidths'],
ratios=self.config['ratios'],
sample_rate=self.config['sample_rate'],
bins=self.config['bins'],
n_q=self.config['n_q'],
codebook_dim=self.config.get('codebook_dim', None),
semantic_techer=self.config['semantic_techer'],
device=self.device
).to(self.device)
if self.distributed:
# Broadcast model parameters to ensure all ranks have same initialization
broadcast_tensors(model.parameters())
# Wrap with DDP
model = DDP(model, device_ids=[self.args.local_rank])
return model
# def build_discriminator(self):
# """Build discriminator with DDP if needed"""
# # Use sample rate from config
# discriminator = Discriminator(
# rates=[], # No multi-rate discriminator for now
# periods=[2, 3, 5, 7, 11],
# fft_sizes=[2048, 1024, 512],
# sample_rate=self.config['sample_rate'],
# ).to(self.device)
# if self.distributed:
# broadcast_tensors(discriminator.parameters())
# discriminator = DDP(discriminator, device_ids=[self.args.local_rank])
# return discriminator
def build_discriminator(self):
discriminator = Discriminator(
rates=[], # No multi-rate discriminator
periods=[2, 3, 5, 7, 11],
fft_sizes=[2048, 1024, 512],
sample_rate=self.config['sample_rate'], # 24000
).to(self.device)
if self.distributed:
broadcast_tensors(discriminator.parameters())
discriminator = DDP(discriminator, device_ids=[self.args.local_rank])
return discriminator
def setup_losses(self):
# Basic losses
self.l1_loss = L1Loss()
self.stft_loss = MultiScaleSTFTLoss(
window_lengths=[2048, 1024, 512, 256, 128],
loss_fn=nn.L1Loss(),
clamp_eps=1e-5,
mag_weight=1.0,
log_weight=1.0,
)
self.mel_loss = MelSpectrogramLoss(
n_mels=[150, 80],
window_lengths=[2048, 512],
mel_fmin=[0.0, 0.0],
mel_fmax=[None, None],
clamp_eps=1e-5,
mag_weight=1.0,
log_weight=1.0,
)
if self.discriminator is not None:
self.gan_loss = GANLoss(self.discriminator)
self.loss_weights = {
'rec': 1., # Waveform L1 loss
'stft': 1., # Multi-scale STFT loss
'mel': 45.0, # Mel-spectrogram loss
'commit': 0.25, # Commitment loss
'semantic': 1., # Semantic loss
'gen': 1., # Generator adversarial loss
'feat': 2.0, # Feature matching loss
}
def setup_data_loaders(self):
# Split data into train/val
df = pd.read_csv(self.args.data_csv)
n_total = len(df)
n_train = int(n_total * 0.9)
# Create temporary CSV files for train/val split
train_csv = '/tmp/train_audio.csv'
val_csv = '/tmp/val_audio.csv'
if not self.distributed or rank() == 0:
df[:n_train].to_csv(train_csv, index=False)
df[n_train:].to_csv(val_csv, index=False)
if self.distributed:
dist.barrier()
# Create datasets
train_dataset = AudioDataset(
train_csv,
sample_rate=self.config['sample_rate'],
segment_duration=self.args.segment_duration,
is_train=True
)
val_dataset = AudioDataset(
val_csv,
sample_rate=self.config['sample_rate'],
segment_duration=self.args.segment_duration,
is_train=False
)
# Create samplers and loaders
if self.distributed:
train_sampler = DistributedSampler(train_dataset, shuffle=True)
val_sampler = DistributedSampler(val_dataset, shuffle=False)
else:
train_sampler = None
val_sampler = None
train_loader = DataLoader(
train_dataset,
batch_size=self.args.batch_size,
sampler=train_sampler,
shuffle=(train_sampler is None),
num_workers=self.args.num_workers,
pin_memory=True,
drop_last=True
)
val_loader = DataLoader(
val_dataset,
batch_size=self.args.batch_size,
sampler=val_sampler,
shuffle=False,
num_workers=self.args.num_workers,
pin_memory=True,
drop_last=False
)
return train_loader, val_loader
def is_main_process(self):
"""Check if this is the main process"""
return not self.distributed or rank() == 0
def train_epoch(self, epoch):
"""Train for one epoch"""
self.model.train()
if self.discriminator is not None:
self.discriminator.train()
if self.distributed:
self.train_loader.sampler.set_epoch(epoch)
total_losses = {
'total': 0, 'rec': 0, 'stft': 0, 'mel': 0,
'commit': 0, 'semantic': 0, 'gen': 0, 'feat': 0, 'disc': 0
}
pbar = tqdm(self.train_loader, desc=f'Epoch {epoch}', disable=not self.is_main_process())
for batch_idx, (audio, paths) in enumerate(pbar):
audio = audio.to(self.device)
# Create AudioSignal objects for loss computation
audio_signal = AudioSignal(audio, self.config['sample_rate'])
# Forward pass with random bandwidth
bw_idx = random.randint(0, len(self.config['target_bandwidths']) - 1)
bw = self.config['target_bandwidths'][bw_idx]
# Use autocast for mixed precision
with autocast(dtype=torch.bfloat16, enabled=self.args.use_mixed_precision):
output, commit_loss, semantic_loss, _ = self.model(audio, bw)
recons_signal = AudioSignal(output, self.config['sample_rate'])
use_discriminator = (self.discriminator is not None and
self.global_step >= self.args.discriminator_start_step)
if use_discriminator and self.global_step % self.args.disc_interval == 0:
self.optimizer_d.zero_grad()
with autocast(dtype=torch.bfloat16, enabled=self.args.use_mixed_precision):
disc_loss = self.gan_loss.discriminator_loss(recons_signal, audio_signal)
if self.scaler_d is not None:
self.scaler_d.scale(disc_loss).backward()
self.scaler_d.unscale_(self.optimizer_d)
torch.nn.utils.clip_grad_norm_(self.discriminator.parameters(), 10.0)
self.scaler_d.step(self.optimizer_d)
self.scaler_d.update()
else:
disc_loss.backward()
torch.nn.utils.clip_grad_norm_(self.discriminator.parameters(), 10.0)
self.optimizer_d.step()
self.scheduler_d.step()
total_losses['disc'] += disc_loss.item()
# Train generator
losses = {}
# Compute losses with autocast
with autocast(dtype=torch.bfloat16, enabled=self.args.use_mixed_precision):
# Reconstruction losses
losses['rec'] = self.l1_loss(recons_signal, audio_signal)
losses['stft'] = self.stft_loss(recons_signal, audio_signal)
losses['mel'] = self.mel_loss(recons_signal, audio_signal)
# losses['mel'] = torch.tensor(0.0, device=self.device) # uncomment this for the first 30k steps, it's faster if you pretrain it on semantic / commit loss first
losses['commit'] = commit_loss
losses['semantic'] = semantic_loss
# GAN losses if discriminator is active
if use_discriminator:
gen_loss, feat_loss = self.gan_loss.generator_loss(recons_signal, audio_signal)
losses['gen'] = gen_loss
losses['feat'] = feat_loss
else:
# Set to zero for logging purposes
losses['gen'] = torch.tensor(0.0, device=self.device)
losses['feat'] = torch.tensor(0.0, device=self.device)
# Total weighted loss
total_loss = sum(self.loss_weights.get(k, 0) * v for k, v in losses.items()
if k not in ['gen', 'feat'] or use_discriminator)
# Backward pass
self.optimizer_g.zero_grad()
if self.scaler_g is not None:
self.scaler_g.scale(total_loss).backward()
self.scaler_g.unscale_(self.optimizer_g)
torch.nn.utils.clip_grad_norm_(self.model.parameters(), 1.0)
self.scaler_g.step(self.optimizer_g)
self.scaler_g.update()
else:
total_loss.backward()
torch.nn.utils.clip_grad_norm_(self.model.parameters(), 1.0)
self.optimizer_g.step()
self.scheduler_g.step()
# Update metrics
total_losses['total'] += total_loss.item()
for k, v in losses.items():
total_losses[k] += v.item()
# Update progress bar
if self.is_main_process():
pbar.set_postfix({
'loss': f'{total_loss.item():.4f}',
'rec': f'{losses["rec"].item():.4f}',
'mel': f'{losses["mel"].item():.4f}',
'commit_loss': f'{losses["commit"].item():.4f}',
'semantic_loss': f'{losses["semantic"].item():.4f}',
'lr': f'{self.scheduler_g.get_last_lr()[0]:.9f}',
'disc': 'ON' if use_discriminator else 'OFF',
'step': self.global_step
})
# Log to tensorboard
if self.is_main_process() and self.global_step % self.args.log_interval == 0:
for k, v in losses.items():
self.writer.add_scalar(f'train/{k}_loss', v.item(), self.global_step)
self.writer.add_scalar('train/total_loss', total_loss.item(), self.global_step)
self.writer.add_scalar('train/lr', self.scheduler_g.get_last_lr()[0], self.global_step)
self.writer.add_scalar('train/bandwidth', bw, self.global_step)
self.writer.add_scalar('train/discriminator_active', float(use_discriminator), self.global_step)
if use_discriminator:
self.writer.add_scalar('train/disc_loss', total_losses['disc'] / max(1, batch_idx), self.global_step)
if self.scaler_g is not None:
self.writer.add_scalar('train/grad_scale', self.scaler_g.get_scale(), self.global_step)
# Save checkpoint at step intervals
if self.global_step > 0 and self.global_step % self.args.save_step_interval == 0:
self.save_checkpoint_step(self.global_step)
if self.is_main_process():
print(f"\nSaved checkpoint at step {self.global_step}")
self.global_step += 1
# Return average losses
n_batches = len(self.train_loader)
return {k: v / n_batches for k, v in total_losses.items()}
@torch.no_grad()
def validate(self, epoch):
"""Validation loop"""
self.model.eval()
total_losses = {
'total': 0, 'rec': 0, 'stft': 0, 'mel': 0,
'commit': 0, 'semantic': 0
}
audio_samples = {'train': [], 'val': []}
for batch_idx, (audio, paths) in enumerate(tqdm(self.val_loader, desc='Validation', disable=not self.is_main_process())):
audio = audio.to(self.device)
audio_signal = AudioSignal(audio, self.config['sample_rate'])
# Use medium bandwidth for validation
bw = self.config['target_bandwidths'][2]
# Use autocast for validation too
with autocast(dtype=torch.bfloat16, enabled=self.args.use_mixed_precision):
output, commit_loss, semantic_loss, _ = self.model(audio, bw)
recons_signal = AudioSignal(output, self.config['sample_rate'])
# Compute losses
losses = {
'rec': self.l1_loss(recons_signal, audio_signal),
'stft': self.stft_loss(recons_signal, audio_signal),
'mel': self.mel_loss(recons_signal, audio_signal),
'commit': commit_loss,
'semantic': semantic_loss
}
total_loss = sum(self.loss_weights.get(k, 0) * v for k, v in losses.items())
total_losses['total'] += total_loss.item()
for k, v in losses.items():
total_losses[k] += v.item()
# Collect audio samples for tensorboard (first 3 from validation)
if self.is_main_process() and len(audio_samples['val']) < 3:
audio_samples['val'].append({
'original': audio[0].cpu(),
'reconstructed': output[0].cpu(),
'path': paths[0]
})
# Get train samples for comparison
if self.is_main_process():
self.model.eval()
for batch_idx, (audio, paths) in enumerate(self.train_loader):
if len(audio_samples['train']) >= 3:
break
audio = audio.to(self.device)
bw = self.config['target_bandwidths'][2]
with autocast(dtype=torch.bfloat16, enabled=self.args.use_mixed_precision):
output, _, _, _ = self.model(audio, bw)
audio_samples['train'].append({
'original': audio[0].cpu(),
'reconstructed': output[0].cpu(),
'path': paths[0]
})
# Log audio samples to tensorboard
if self.is_main_process():
for split in ['train', 'val']:
for idx, sample in enumerate(audio_samples[split]):
self.writer.add_audio(
f'{split}/original_{idx}',
sample['original'],
epoch,
sample_rate=self.config['sample_rate']
)
self.writer.add_audio(
f'{split}/reconstructed_{idx}',
sample['reconstructed'],
epoch,
sample_rate=self.config['sample_rate']
)
# Average losses
n_batches = len(self.val_loader)
val_metrics = {k: v / n_batches for k, v in total_losses.items()}
# Log validation metrics
if self.is_main_process():
for key, value in val_metrics.items():
self.writer.add_scalar(f'val/{key}_loss', value, epoch)
return val_metrics
def save_checkpoint(self, epoch, is_best=False):
"""Save model checkpoint (epoch-based)"""
if not self.is_main_process():
return
model_state = self.model.module.state_dict() if self.distributed else self.model.state_dict()
# Get current learning rates for verification
current_lr_g = self.scheduler_g.get_last_lr()[0]
checkpoint = {
'epoch': epoch,
'global_step': self.global_step,
'model_state_dict': model_state,
'optimizer_g_state_dict': self.optimizer_g.state_dict(),
'scheduler_g_state_dict': self.scheduler_g.state_dict(),
'scheduler_g_last_epoch': self.scheduler_g.last_epoch, # Explicitly save this
'current_lr_g': current_lr_g, # Save for verification
'config': self.config,
'args': self.args
}
# Save gradient scaler states if using mixed precision
if self.scaler_g is not None:
checkpoint['scaler_g_state_dict'] = self.scaler_g.state_dict()
if self.discriminator is not None:
disc_state = self.discriminator.module.state_dict() if self.distributed else self.discriminator.state_dict()
current_lr_d = self.scheduler_d.get_last_lr()[0]
checkpoint['discriminator_state_dict'] = disc_state
checkpoint['optimizer_d_state_dict'] = self.optimizer_d.state_dict()
checkpoint['scheduler_d_state_dict'] = self.scheduler_d.state_dict()
checkpoint['scheduler_d_last_epoch'] = self.scheduler_d.last_epoch
checkpoint['current_lr_d'] = current_lr_d
if self.scaler_d is not None:
checkpoint['scaler_d_state_dict'] = self.scaler_d.state_dict()
# Save latest checkpoint
checkpoint_path = os.path.join(self.args.output_dir, 'checkpoints', 'latest.pth')
os.makedirs(os.path.dirname(checkpoint_path), exist_ok=True)
torch.save(checkpoint, checkpoint_path)
# Save best checkpoint
if is_best:
best_path = os.path.join(self.args.output_dir, 'checkpoints', 'best.pth')
torch.save(checkpoint, best_path)
# Save periodic checkpoint
if epoch % self.args.save_interval == 0:
epoch_path = os.path.join(self.args.output_dir, 'checkpoints', f'epoch_{epoch}.pth')
torch.save(checkpoint, epoch_path)
def save_checkpoint_step(self, step):
"""Save model checkpoint (step-based)"""
if not self.is_main_process():
return
# Get current epoch from training loop
current_epoch = step // len(self.train_loader)
model_state = self.model.module.state_dict() if self.distributed else self.model.state_dict()
# Get current learning rates for verification
current_lr_g = self.scheduler_g.get_last_lr()[0]
checkpoint = {
'epoch': current_epoch,
'global_step': step,
'model_state_dict': model_state,
'optimizer_g_state_dict': self.optimizer_g.state_dict(),
'scheduler_g_state_dict': self.scheduler_g.state_dict(),
'scheduler_g_last_epoch': self.scheduler_g.last_epoch, # Explicitly save this
'current_lr_g': current_lr_g, # Save for verification
'config': self.config,
'args': self.args
}
# Save gradient scaler states if using mixed precision
if self.scaler_g is not None:
checkpoint['scaler_g_state_dict'] = self.scaler_g.state_dict()
if self.discriminator is not None:
disc_state = self.discriminator.module.state_dict() if self.distributed else self.discriminator.state_dict()
current_lr_d = self.scheduler_d.get_last_lr()[0]
checkpoint['discriminator_state_dict'] = disc_state
checkpoint['optimizer_d_state_dict'] = self.optimizer_d.state_dict()
checkpoint['scheduler_d_state_dict'] = self.scheduler_d.state_dict()
checkpoint['scheduler_d_last_epoch'] = self.scheduler_d.last_epoch
checkpoint['current_lr_d'] = current_lr_d
if self.scaler_d is not None:
checkpoint['scaler_d_state_dict'] = self.scaler_d.state_dict()
# Create checkpoint directory if it doesn't exist
checkpoint_dir = os.path.join(self.args.output_dir, 'checkpoints')
os.makedirs(checkpoint_dir, exist_ok=True)
# Save step-based checkpoint
step_path = os.path.join(self.args.output_dir, 'checkpoints', f'step_{step}.pth')
torch.save(checkpoint, step_path)
# Also update latest checkpoint
latest_path = os.path.join(self.args.output_dir, 'checkpoints', 'latest.pth')
torch.save(checkpoint, latest_path)
# Keep only the last N step-based checkpoints to save disk space
if self.args.keep_last_n_steps > 0:
checkpoint_dir = os.path.join(self.args.output_dir, 'checkpoints')
step_checkpoints = sorted([f for f in os.listdir(checkpoint_dir) if f.startswith('step_')])
if len(step_checkpoints) > self.args.keep_last_n_steps:
for old_checkpoint in step_checkpoints[:-self.args.keep_last_n_steps]:
os.remove(os.path.join(checkpoint_dir, old_checkpoint))
def load_checkpoint(self):
checkpoint_path = os.path.join(self.args.output_dir, 'checkpoints', 'latest.pth')
if os.path.exists(checkpoint_path):
print(f"Loading checkpoint from {checkpoint_path}")
checkpoint = torch.load(checkpoint_path, map_location=self.device, weights_only=False)
if self.distributed:
self.model.module.load_state_dict(checkpoint['model_state_dict'])
else:
self.model.load_state_dict(checkpoint['model_state_dict'])
# Load optimizer state
self.optimizer_g.load_state_dict(checkpoint['optimizer_g_state_dict'])
# Load scheduler state
self.scheduler_g.load_state_dict(checkpoint['scheduler_g_state_dict'])
# Restore scheduler's last_epoch from checkpoint
if 'scheduler_g_last_epoch' in checkpoint:
self.scheduler_g.last_epoch = checkpoint['scheduler_g_last_epoch']
else:
self.scheduler_g.last_epoch = checkpoint['global_step']
# Force scheduler to recompute its internal state
self.scheduler_g._last_lr = self.scheduler_g.get_lr()
# Load gradient scaler state if using mixed precision
if self.scaler_g is not None and 'scaler_g_state_dict' in checkpoint:
self.scaler_g.load_state_dict(checkpoint['scaler_g_state_dict'])
# Load discriminator if present
if self.discriminator is not None and 'discriminator_state_dict' in checkpoint:
if self.distributed:
self.discriminator.module.load_state_dict(checkpoint['discriminator_state_dict'])
else:
self.discriminator.load_state_dict(checkpoint['discriminator_state_dict'])
self.optimizer_d.load_state_dict(checkpoint['optimizer_d_state_dict'])
self.scheduler_d.load_state_dict(checkpoint['scheduler_d_state_dict'])
# Restore discriminator scheduler's last_epoch
if 'scheduler_d_last_epoch' in checkpoint:
self.scheduler_d.last_epoch = checkpoint['scheduler_d_last_epoch']
else:
self.scheduler_d.last_epoch = checkpoint['global_step']
self.scheduler_d._last_lr = self.scheduler_d.get_lr()
if self.scaler_d is not None and 'scaler_d_state_dict' in checkpoint:
self.scaler_d.load_state_dict(checkpoint['scaler_d_state_dict'])
# Restore training state
self.start_epoch = checkpoint['epoch'] + 1
self.global_step = checkpoint['global_step']
# Verify learning rate restoration
current_lr_g = self.scheduler_g.get_last_lr()[0]
saved_lr_g = checkpoint.get('current_lr_g', None)
print(f"\n{'='*60}")
print(f"CHECKPOINT LOADED SUCCESSFULLY")
print(f"{'='*60}")
print(f"Resumed from epoch: {checkpoint['epoch']}")
print(f"Global step: {self.global_step}")
print(f"Scheduler last_epoch: {self.scheduler_g.last_epoch}")
print(f"Current learning rate (generator): {current_lr_g:.9f}")
print(f"Mixed precision: {'ENABLED' if self.args.use_mixed_precision else 'DISABLED'}")
if saved_lr_g is not None:
print(f"Saved learning rate (generator): {saved_lr_g:.9f}")
if abs(current_lr_g - saved_lr_g) > 1e-9:
print("⚠️ WARNING: Learning rate mismatch! This might indicate improper state restoration.")
if self.discriminator is not None:
current_lr_d = self.scheduler_d.get_last_lr()[0]
saved_lr_d = checkpoint.get('current_lr_d', None)
print(f"Current learning rate (discriminator): {current_lr_d:.9f}")
if saved_lr_d is not None:
print(f"Saved learning rate (discriminator): {saved_lr_d:.9f}")
print(f"Discriminator status: {'ACTIVE' if self.global_step >= self.args.discriminator_start_step else f'INACTIVE (starts at step {self.args.discriminator_start_step})'}")
print(f"Next epoch: {self.start_epoch}")
print(f"Next step checkpoint at: step {((self.global_step // self.args.save_step_interval) + 1) * self.args.save_step_interval}")
print(f"{'='*60}\n")
g
if self.global_step > 0:
temp_scheduler = CosineWarmupScheduler(
self.optimizer_g,
self.args.warmup_steps,
self.total_steps,
eta_min=1e-6,
last_epoch=-1
)
# Step it to the current global step
for _ in range(self.global_step):
temp_scheduler.step()
expected_lr = temp_scheduler.get_last_lr()[0]
if abs(current_lr_g - expected_lr) > 1e-9:
print(f"⚠️ Learning rate verification failed!")
print(f" Expected: {expected_lr:.9f}")
print(f" Got: {current_lr_g:.9f}")
print(" The scheduler state might not be properly restored.")
else:
print(f"No checkpoint found at {checkpoint_path}, starting from scratch")
def train(self):
"""Main training loop"""
best_val_loss = float('inf')
# Print training configuration
if self.is_main_process():
print(f"\n{'='*50}")
print(f"Training Configuration:")
print(f"{'='*50}")
print(f"Total epochs: {self.args.num_epochs}")
print(f"Steps per epoch: {len(self.train_loader)}")
print(f"Total steps: {self.total_steps}")
print(f"Warmup steps: {self.args.warmup_steps}")
print(f"Mixed precision training: {'ENABLED (bfloat16)' if self.args.use_mixed_precision else 'DISABLED'}")
print(f"Discriminator starts at step: {self.args.discriminator_start_step}")
print(f"Checkpoint saving:")
print(f" - Every {self.args.save_interval} epochs")
print(f" - Every {self.args.save_step_interval} steps")
print(f" - Keep last {self.args.keep_last_n_steps} step checkpoints")
if self.start_epoch > 0:
print(f"RESUMING from epoch {self.start_epoch}, step {self.global_step}")
print(f"{'='*50}\n")
for epoch in range(self.start_epoch, self.args.num_epochs):
# IMPORTANT: Set the epoch for distributed sampler when resuming
# This ensures proper data shuffling across epochs
if self.distributed and hasattr(self.train_loader.sampler, 'set_epoch'):
self.train_loader.sampler.set_epoch(epoch)
# Train
train_metrics = self.train_epoch(epoch)
# Validate
val_metrics = self.validate(epoch)
# Log epoch metrics
if self.is_main_process():
print(f"\nEpoch {epoch} Summary:")
print(f"Train - Total: {train_metrics['total']:.4f}, Rec: {train_metrics['rec']:.4f}, "
f"STFT: {train_metrics['stft']:.4f}, Mel: {train_metrics['mel']:.4f}, "
f"Commit: {train_metrics['commit']:.4f}, Semantic: {train_metrics['semantic']:.4f}")
if self.discriminator is not None:
print(f" Gen: {train_metrics['gen']:.4f}, Feat: {train_metrics['feat']:.4f}, "
f"Disc: {train_metrics['disc']:.4f}")
print(f" Discriminator Status: {'Active' if self.global_step >= self.args.discriminator_start_step else f'Starting at step {self.args.discriminator_start_step}'}")
print(f"Val - Total: {val_metrics['total']:.4f}, Rec: {val_metrics['rec']:.4f}, "
f"STFT: {val_metrics['stft']:.4f}, Mel: {val_metrics['mel']:.4f}, "
f"Commit: {val_metrics['commit']:.4f}, Semantic: {val_metrics['semantic']:.4f}")
print(f"Current Step: {self.global_step}, Next step checkpoint at: {((self.global_step // self.args.save_step_interval) + 1) * self.args.save_step_interval}")
print(f"Current LR: {self.scheduler_g.get_last_lr()[0]:.9f}")
# Save checkpoint
is_best = val_metrics['total'] < best_val_loss
if is_best:
best_val_loss = val_metrics['total']
self.save_checkpoint(epoch, is_best)
# Save final model
if self.is_main_process():
model_state = self.model.module.state_dict() if self.distributed else self.model.state_dict()
final_path = os.path.join(self.args.output_dir, 'checkpoints', 'final.pth')
torch.save({
'model_state_dict': model_state,
'config': self.config
}, final_path)
# Also save just the model weights in the format expected by the original code
model_only_path = os.path.join(self.args.output_dir, 'model.pth')
torch.save(model_state, model_only_path)
# Copy config
import shutil
shutil.copy(self.args.config, os.path.join(self.args.output_dir, 'config.json'))
# Cleanup
if self.is_main_process():
self.writer.close()
if self.distributed:
dist.destroy_process_group()
def main():
parser = argparse.ArgumentParser(description='Train Boson Audio Codec')
# Data arguments
parser.add_argument('--data_csv', type=str, required=True,
help='Path to CSV file containing audio file paths')
parser.add_argument('--config', type=str, default='config.json',
help='Path to config JSON file')
# Training arguments
parser.add_argument('--batch_size', type=int, default=28,
help='Batch size per GPU')
parser.add_argument('--num_epochs', type=int, default=100,
help='Number of training epochs')
parser.add_argument('--learning_rate', type=float, default=1e-4,
help='Initial learning rate')
parser.add_argument('--weight_decay', type=float, default=0.01,
help='Weight decay')
parser.add_argument('--segment_duration', type=float, default=2.,
help='Audio segment duration in seconds')
# Mixed precision training
parser.add_argument('--use_mixed_precision', action='store_true',
help='Use bfloat16 mixed precision training')
# Scheduler arguments
parser.add_argument('--warmup_steps', type=int, default=5000,
help='Number of warmup steps for cosine scheduler')
# Loss arguments
parser.add_argument('--use_discriminator', action='store_true',
help='Use adversarial training with discriminator')
parser.add_argument('--discriminator_start_step', type=int, default=30_000,
help='Start training discriminator after N steps')
parser.add_argument('--disc_interval', type=int, default=1,
help='Train discriminator every N steps')
# System arguments
parser.add_argument('--output_dir', type=str, default='outputs_mp_cqt',
help='Output directory for checkpoints and logs')
parser.add_argument('--num_workers', type=int, default=16,
help='Number of data loading workers')
parser.add_argument('--seed', type=int, default=42,
help='Random seed')
parser.add_argument('--local_rank', type=int, default=0,
help='Local rank for distributed training')
# Logging arguments
parser.add_argument('--log_interval', type=int, default=10,
help='Log every N steps')
parser.add_argument('--save_interval', type=int, default=1,
help='Save checkpoint every N epochs')
parser.add_argument('--save_step_interval', type=int, default=1000,
help='Save checkpoint every N steps')
parser.add_argument('--keep_last_n_steps', type=int, default=5,
help='Keep only the last N step-based checkpoints (0 to keep all)')
# Resume training
parser.add_argument('--resume', action='store_true',
help='Resume training from latest checkpoint') # NOTE: you gotta change your desired checkpoint's name to latest.pth
args = parser.parse_args()
# Create output directory
os.makedirs(args.output_dir, exist_ok=True)
# Train
trainer = BosonTrainer(args)
trainer.train()
if __name__ == '__main__':
torch.set_float32_matmul_precision('high')
main()