dcfidalgo
commited on
Commit
•
435eb54
1
Parent(s):
b37798c
add training script
Browse files- zeroshot_training_script.py +247 -0
zeroshot_training_script.py
ADDED
@@ -0,0 +1,247 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# coding: utf-8
|
3 |
+
|
4 |
+
# # Creating a Zero-Shot classifier based on BETO
|
5 |
+
#
|
6 |
+
# This notebook/script fine-tunes a BETO (spanish bert, 'dccuchile/bert-base-spanish-wwm-cased') model on the spanish XNLI dataset.
|
7 |
+
# The fine-tuned model can then be fed to a Huggingface ZeroShot pipeline to obtain a ZeroShot classifier.
|
8 |
+
|
9 |
+
# In[ ]:
|
10 |
+
|
11 |
+
|
12 |
+
from datasets import load_dataset, Dataset, load_metric, load_from_disk
|
13 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
14 |
+
from transformers import Trainer, TrainingArguments
|
15 |
+
import torch
|
16 |
+
from pathlib import Path
|
17 |
+
# from ray import tune
|
18 |
+
# from ray.tune.suggest.hyperopt import HyperOptSearch
|
19 |
+
# from ray.tune.schedulers import ASHAScheduler
|
20 |
+
|
21 |
+
|
22 |
+
# # Prepare the datasets
|
23 |
+
|
24 |
+
# In[ ]:
|
25 |
+
|
26 |
+
|
27 |
+
xnli_es = load_dataset("xnli", "es")
|
28 |
+
|
29 |
+
|
30 |
+
# In[ ]:
|
31 |
+
|
32 |
+
|
33 |
+
xnli_es
|
34 |
+
|
35 |
+
|
36 |
+
# >joeddav
|
37 |
+
# >Aug '20
|
38 |
+
# >
|
39 |
+
# >@rsk97 In addition, just make sure the model used is trained on an NLI task and that the **last output label corresponds to entailment** while the **first output label corresponds to contradiction**.
|
40 |
+
#
|
41 |
+
# => We change the original `label` and use the `labels` column, which is required by a `AutoModelForSequenceClassification`
|
42 |
+
|
43 |
+
# In[ ]:
|
44 |
+
|
45 |
+
|
46 |
+
# see markdown above
|
47 |
+
def switch_label_id(row):
|
48 |
+
if row["label"] == 0:
|
49 |
+
return {"labels": 2}
|
50 |
+
elif row["label"] == 2:
|
51 |
+
return {"labels": 0}
|
52 |
+
else:
|
53 |
+
return {"labels": 1}
|
54 |
+
|
55 |
+
for split in xnli_es:
|
56 |
+
xnli_es[split] = xnli_es[split].map(switch_label_id)
|
57 |
+
|
58 |
+
|
59 |
+
# ## Tokenize data
|
60 |
+
|
61 |
+
# In[ ]:
|
62 |
+
|
63 |
+
|
64 |
+
tokenizer = AutoTokenizer.from_pretrained("dccuchile/bert-base-spanish-wwm-cased")
|
65 |
+
|
66 |
+
|
67 |
+
# In a first attempt i padded all data to the maximum length of the dataset (379). However, the traninig takes substanially longer with all the paddings, it's better to pass in the tokenizer to the `Trainer` and let the `Trainer` do the padding on a batch level.
|
68 |
+
|
69 |
+
# In[ ]:
|
70 |
+
|
71 |
+
|
72 |
+
# Figured out max length of the dataset manually
|
73 |
+
# max_length = 379
|
74 |
+
def tokenize(row):
|
75 |
+
return tokenizer(row["premise"], row["hypothesis"], truncation=True, max_length=512) #, padding="max_length", max_length=max_length)
|
76 |
+
|
77 |
+
|
78 |
+
# In[ ]:
|
79 |
+
|
80 |
+
|
81 |
+
data = {}
|
82 |
+
for split in xnli_es:
|
83 |
+
data[split] = xnli_es[split].map(
|
84 |
+
tokenize,
|
85 |
+
remove_columns=["hypothesis", "premise", "label"],
|
86 |
+
batched=True,
|
87 |
+
batch_size=128
|
88 |
+
)
|
89 |
+
|
90 |
+
|
91 |
+
# In[ ]:
|
92 |
+
|
93 |
+
|
94 |
+
train_path = str(Path("./train_ds").absolute())
|
95 |
+
valid_path = str(Path("./valid_ds").absolute())
|
96 |
+
|
97 |
+
data["train"].save_to_disk(train_path)
|
98 |
+
data["validation"].save_to_disk(valid_path)
|
99 |
+
|
100 |
+
|
101 |
+
# In[ ]:
|
102 |
+
|
103 |
+
|
104 |
+
# We can use `datasets.Dataset`s directly
|
105 |
+
|
106 |
+
# class XnliDataset(torch.utils.data.Dataset):
|
107 |
+
# def __init__(self, data):
|
108 |
+
# self.data = data
|
109 |
+
|
110 |
+
# def __getitem__(self, idx):
|
111 |
+
# item = {key: torch.tensor(val) for key, val in self.data[idx].items()}
|
112 |
+
# return item
|
113 |
+
|
114 |
+
# def __len__(self):
|
115 |
+
# return len(self.data)
|
116 |
+
|
117 |
+
|
118 |
+
# In[ ]:
|
119 |
+
|
120 |
+
|
121 |
+
def trainable(config):
|
122 |
+
metric = load_metric("xnli", "es")
|
123 |
+
|
124 |
+
def compute_metrics(eval_pred):
|
125 |
+
predictions, labels = eval_pred
|
126 |
+
predictions = predictions.argmax(axis=-1)
|
127 |
+
return metric.compute(predictions=predictions, references=labels)
|
128 |
+
|
129 |
+
model = AutoModelForSequenceClassification.from_pretrained("dccuchile/bert-base-spanish-wwm-cased", num_labels=3)
|
130 |
+
|
131 |
+
training_args = TrainingArguments(
|
132 |
+
output_dir='./results', # output directory
|
133 |
+
do_train=True,
|
134 |
+
do_eval=True,
|
135 |
+
evaluation_strategy="steps",
|
136 |
+
eval_steps=500,
|
137 |
+
load_best_model_at_end=True,
|
138 |
+
metric_for_best_model="eval_accuracy",
|
139 |
+
num_train_epochs=config["epochs"], # total number of training epochs
|
140 |
+
per_device_train_batch_size=config["batch_size"], # batch size per device during training
|
141 |
+
per_device_eval_batch_size=config["batch_size_eval"], # batch size for evaluation
|
142 |
+
warmup_steps=config["warmup_steps"], # 500
|
143 |
+
weight_decay=config["weight_decay"], # 0.001 # strength of weight decay
|
144 |
+
learning_rate=config["learning_rate"], # 5e-05
|
145 |
+
logging_dir='./logs', # directory for storing logs
|
146 |
+
logging_steps=250,
|
147 |
+
#save_steps=500, # ignored when using load_best_model_at_end
|
148 |
+
save_total_limit=10,
|
149 |
+
no_cuda=False,
|
150 |
+
disable_tqdm=True,
|
151 |
+
)
|
152 |
+
|
153 |
+
# train_dataset = XnliDataset(load_from_disk(config["train_path"]))
|
154 |
+
# valid_dataset = XnliDataset(load_from_disk(config["valid_path"]))
|
155 |
+
train_dataset = load_from_disk(config["train_path"])
|
156 |
+
valid_dataset = load_from_disk(config["valid_path"])
|
157 |
+
|
158 |
+
|
159 |
+
trainer = Trainer(
|
160 |
+
model,
|
161 |
+
tokenizer=tokenizer,
|
162 |
+
args=training_args, # training arguments, defined above
|
163 |
+
train_dataset=train_dataset, # training dataset
|
164 |
+
eval_dataset=valid_dataset, # evaluation dataset
|
165 |
+
compute_metrics=compute_metrics,
|
166 |
+
)
|
167 |
+
|
168 |
+
trainer.train()
|
169 |
+
|
170 |
+
|
171 |
+
# In[ ]:
|
172 |
+
|
173 |
+
|
174 |
+
trainable(
|
175 |
+
{
|
176 |
+
"train_path": train_path,
|
177 |
+
"valid_path": valid_path,
|
178 |
+
"batch_size": 16,
|
179 |
+
"batch_size_eval": 64,
|
180 |
+
"warmup_steps": 500,
|
181 |
+
"weight_decay": 0.001,
|
182 |
+
"learning_rate": 5e-5,
|
183 |
+
"epochs": 3,
|
184 |
+
}
|
185 |
+
)
|
186 |
+
|
187 |
+
|
188 |
+
# # HPO
|
189 |
+
|
190 |
+
# In[ ]:
|
191 |
+
|
192 |
+
|
193 |
+
# config = {
|
194 |
+
# "train_path": train_path,
|
195 |
+
# "valid_path": valid_path,
|
196 |
+
# "warmup_steps": tune.randint(0, 500),
|
197 |
+
# "weight_decay": tune.loguniform(0.00001, 0.1),
|
198 |
+
# "learning_rate": tune.loguniform(5e-6, 5e-4),
|
199 |
+
# "epochs": tune.choice([2, 3, 4])
|
200 |
+
# }
|
201 |
+
|
202 |
+
|
203 |
+
# # In[ ]:
|
204 |
+
|
205 |
+
|
206 |
+
# analysis = tune.run(
|
207 |
+
# trainable,
|
208 |
+
# config=config,
|
209 |
+
# metric="eval_acc",
|
210 |
+
# mode="max",
|
211 |
+
# #search_alg=HyperOptSearch(),
|
212 |
+
# #scheduler=ASHAScheduler(),
|
213 |
+
# num_samples=1,
|
214 |
+
# )
|
215 |
+
|
216 |
+
|
217 |
+
# # In[ ]:
|
218 |
+
|
219 |
+
|
220 |
+
# def model_init():
|
221 |
+
# return AutoModelForSequenceClassification.from_pretrained("dccuchile/bert-base-spanish-wwm-cased", num_labels=3)
|
222 |
+
|
223 |
+
# trainer = Trainer(
|
224 |
+
# args=training_args, # training arguments, defined above
|
225 |
+
# train_dataset=train_dataset, # training dataset
|
226 |
+
# eval_dataset=valid_dataset, # evaluation dataset
|
227 |
+
# model_init=model_init,
|
228 |
+
# compute_metrics=compute_metrics,
|
229 |
+
# )
|
230 |
+
|
231 |
+
|
232 |
+
# # In[ ]:
|
233 |
+
|
234 |
+
|
235 |
+
# best_trial = trainer.hyperparameter_search(
|
236 |
+
# direction="maximize",
|
237 |
+
# backend="ray",
|
238 |
+
# n_trials=2,
|
239 |
+
# # Choose among many libraries:
|
240 |
+
# # https://docs.ray.io/en/latest/tune/api_docs/suggestion.html
|
241 |
+
# search_alg=HyperOptSearch(mode="max", metric="accuracy"),
|
242 |
+
# # Choose among schedulers:
|
243 |
+
# # https://docs.ray.io/en/latest/tune/api_docs/schedulers.html
|
244 |
+
# scheduler=ASHAScheduler(mode="max", metric="accuracy"),
|
245 |
+
# local_dir="tune_runs",
|
246 |
+
# )
|
247 |
+
|