metadata
license: mit
base_model: roberta-base
tags:
- generated_from_trainer
datasets:
- ag_news
metrics:
- accuracy
model-index:
- name: N_roberta_agnews_padding20model
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: ag_news
type: ag_news
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9485526315789473
N_roberta_agnews_padding20model
This model is a fine-tuned version of roberta-base on the ag_news dataset. It achieves the following results on the evaluation set:
- Loss: 0.5475
- Accuracy: 0.9486
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.1932 | 1.0 | 7500 | 0.1956 | 0.9442 |
0.1695 | 2.0 | 15000 | 0.1987 | 0.9459 |
0.1531 | 3.0 | 22500 | 0.2017 | 0.9462 |
0.1247 | 4.0 | 30000 | 0.2431 | 0.9479 |
0.1026 | 5.0 | 37500 | 0.2465 | 0.9479 |
0.078 | 6.0 | 45000 | 0.3001 | 0.9478 |
0.0752 | 7.0 | 52500 | 0.3209 | 0.945 |
0.048 | 8.0 | 60000 | 0.3456 | 0.9484 |
0.0408 | 9.0 | 67500 | 0.4119 | 0.9436 |
0.0338 | 10.0 | 75000 | 0.3976 | 0.945 |
0.0305 | 11.0 | 82500 | 0.4211 | 0.945 |
0.022 | 12.0 | 90000 | 0.4607 | 0.9470 |
0.0224 | 13.0 | 97500 | 0.4733 | 0.9464 |
0.0127 | 14.0 | 105000 | 0.4984 | 0.9466 |
0.0135 | 15.0 | 112500 | 0.4808 | 0.9492 |
0.0085 | 16.0 | 120000 | 0.4993 | 0.9497 |
0.0045 | 17.0 | 127500 | 0.5184 | 0.9475 |
0.0046 | 18.0 | 135000 | 0.5259 | 0.9479 |
0.0037 | 19.0 | 142500 | 0.5419 | 0.9483 |
0.0017 | 20.0 | 150000 | 0.5475 | 0.9486 |
Framework versions
- Transformers 4.33.2
- Pytorch 2.0.1+cu117
- Datasets 2.14.5
- Tokenizers 0.13.3