Realgon's picture
End of training
aef3b9d
metadata
license: apache-2.0
base_model: distilbert-base-uncased
tags:
  - generated_from_trainer
datasets:
  - ag_news
metrics:
  - accuracy
model-index:
  - name: N_distilbert_agnews_padding30model
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: ag_news
          type: ag_news
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9431578947368421

N_distilbert_agnews_padding30model

This model is a fine-tuned version of distilbert-base-uncased on the ag_news dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6563
  • Accuracy: 0.9432

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.1786 1.0 7500 0.1921 0.9395
0.1379 2.0 15000 0.1926 0.9447
0.1163 3.0 22500 0.2237 0.9443
0.0863 4.0 30000 0.2627 0.9432
0.0551 5.0 37500 0.3291 0.9412
0.0422 6.0 45000 0.3613 0.9464
0.0356 7.0 52500 0.4004 0.9405
0.0319 8.0 60000 0.4574 0.9388
0.0229 9.0 67500 0.4549 0.9404
0.0173 10.0 75000 0.4684 0.9420
0.0173 11.0 82500 0.4891 0.9405
0.0097 12.0 90000 0.5301 0.9418
0.0088 13.0 97500 0.5361 0.9409
0.0061 14.0 105000 0.5930 0.9433
0.0031 15.0 112500 0.5658 0.9438
0.0037 16.0 120000 0.6000 0.9420
0.0023 17.0 127500 0.6230 0.9420
0.0003 18.0 135000 0.6184 0.9441
0.0003 19.0 142500 0.6488 0.9426
0.0007 20.0 150000 0.6563 0.9432

Framework versions

  • Transformers 4.33.2
  • Pytorch 2.0.1+cu117
  • Datasets 2.14.5
  • Tokenizers 0.13.3