metadata
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
datasets:
- ag_news
metrics:
- accuracy
model-index:
- name: N_distilbert_agnews_padding30model
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: ag_news
type: ag_news
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9431578947368421
N_distilbert_agnews_padding30model
This model is a fine-tuned version of distilbert-base-uncased on the ag_news dataset. It achieves the following results on the evaluation set:
- Loss: 0.6563
- Accuracy: 0.9432
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.1786 | 1.0 | 7500 | 0.1921 | 0.9395 |
0.1379 | 2.0 | 15000 | 0.1926 | 0.9447 |
0.1163 | 3.0 | 22500 | 0.2237 | 0.9443 |
0.0863 | 4.0 | 30000 | 0.2627 | 0.9432 |
0.0551 | 5.0 | 37500 | 0.3291 | 0.9412 |
0.0422 | 6.0 | 45000 | 0.3613 | 0.9464 |
0.0356 | 7.0 | 52500 | 0.4004 | 0.9405 |
0.0319 | 8.0 | 60000 | 0.4574 | 0.9388 |
0.0229 | 9.0 | 67500 | 0.4549 | 0.9404 |
0.0173 | 10.0 | 75000 | 0.4684 | 0.9420 |
0.0173 | 11.0 | 82500 | 0.4891 | 0.9405 |
0.0097 | 12.0 | 90000 | 0.5301 | 0.9418 |
0.0088 | 13.0 | 97500 | 0.5361 | 0.9409 |
0.0061 | 14.0 | 105000 | 0.5930 | 0.9433 |
0.0031 | 15.0 | 112500 | 0.5658 | 0.9438 |
0.0037 | 16.0 | 120000 | 0.6000 | 0.9420 |
0.0023 | 17.0 | 127500 | 0.6230 | 0.9420 |
0.0003 | 18.0 | 135000 | 0.6184 | 0.9441 |
0.0003 | 19.0 | 142500 | 0.6488 | 0.9426 |
0.0007 | 20.0 | 150000 | 0.6563 | 0.9432 |
Framework versions
- Transformers 4.33.2
- Pytorch 2.0.1+cu117
- Datasets 2.14.5
- Tokenizers 0.13.3