Ravinthiran
commited on
Commit
•
19385e3
1
Parent(s):
9f22c2b
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
pipeline_tag: text-classification
|
6 |
+
tags:
|
7 |
+
- Sentiment Analysis
|
8 |
+
- Language Models
|
9 |
+
---
|
10 |
+
## Model Architecture
|
11 |
+
- **Embedding Layer**: Converts input text into dense vectors.
|
12 |
+
- **CNN Layers**: Extracts features from text sequences.
|
13 |
+
- **RNN, LSTM, and GRU Layers**: Capture temporal dependencies in text.
|
14 |
+
- **Dense Layers**: Classify text into sentiment categories.
|
15 |
+
|
16 |
+
## Usage
|
17 |
+
You can use this model for sentiment analysis on text data. Here's a sample code to load and use the model:
|
18 |
+
|
19 |
+
```python
|
20 |
+
from huggingface_hub import from_pretrained_keras
|
21 |
+
import re
|
22 |
+
import numpy as np
|
23 |
+
from tensorflow.keras.preprocessing.sequence import pad_sequences
|
24 |
+
|
25 |
+
# Load model
|
26 |
+
model = from_pretrained_keras("Ravinthiran/DistilSenti-Net42M")
|
27 |
+
|
28 |
+
# Example prediction function
|
29 |
+
def predict_sentiment(text, model, tokenizer, label_encoder):
|
30 |
+
text = text.lower()
|
31 |
+
text = re.sub(r'[^\w\s]', '', text)
|
32 |
+
sequence = tokenizer.texts_to_sequences([text])
|
33 |
+
padded_sequence = pad_sequences(sequence, maxlen=100)
|
34 |
+
pred = model.predict(padded_sequence)
|
35 |
+
sentiment = label_encoder.inverse_transform(pred.argmax(axis=1))
|
36 |
+
sentiment_score = pred[0]
|
37 |
+
return sentiment[0], sentiment_score
|
38 |
+
|
39 |
+
# Example usage
|
40 |
+
new_text = "I recently started a new fitness program at a local wellness center, and it has been an incredibly positive experience."
|
41 |
+
predicted_sentiment, sentiment_score = predict_sentiment(new_text, model, tokenizer, label_encoder)
|
42 |
+
|
43 |
+
print(f"Predicted Sentiment: {predicted_sentiment}")
|
44 |
+
print(f"Sentiment Scores: {sentiment_score}")
|