metadata
license: other
base_model: black-forest-labs/FLUX.1-dev
tags:
- flux
- flux-diffusers
- text-to-image
- diffusers
- simpletuner
- lora
- template:sd-lora
inference: true
widget:
- text: unconditional (blank prompt)
parameters:
negative_prompt: blurry, cropped, ugly
output:
url: ./assets/image_0_0.png
- text: a juggalo performing miracles at a festival
parameters:
negative_prompt: blurry, cropped, ugly
output:
url: ./assets/image_1_0.png
- text: a juggalo man and woman in a close-up portrait smiling and happy
parameters:
negative_prompt: blurry, cropped, ugly
output:
url: ./assets/image_2_0.png
- text: a juggalo family portrait
parameters:
negative_prompt: blurry, cropped, ugly
output:
url: ./assets/image_3_0.png
- text: a juggalo teacher giving a lesson to a classroom of juggalo students
parameters:
negative_prompt: blurry, cropped, ugly
output:
url: ./assets/image_4_0.png
- text: a toddler juggalo criminal mugshot 1998 olan mills studio photography
parameters:
negative_prompt: blurry, cropped, ugly
output:
url: ./assets/image_5_0.png
- text: a baby juggalo welder working on the titanic, 1912, sepia
parameters:
negative_prompt: blurry, cropped, ugly
output:
url: ./assets/image_6_0.png
- text: >-
a baby juggalo news anchor on the insane clown news network wearing
glasses
parameters:
negative_prompt: blurry, cropped, ugly
output:
url: ./assets/image_7_0.png
- text: a juggalo holding a sign that says keepin it real
parameters:
negative_prompt: blurry, cropped, ugly
output:
url: ./assets/image_8_0.png
flux-juggalos-lokr
This is a LyCORIS adapter derived from black-forest-labs/FLUX.1-dev.
The main validation prompt used during training was:
a juggalo holding a sign that says keepin it real
Validation settings
- CFG:
3.4
- CFG Rescale:
0.0
- Steps:
25
- Sampler:
None
- Seed:
42
- Resolution:
1024x1024
Note: The validation settings are not necessarily the same as the training settings.
You can find some example images in the following gallery:
The text encoder was not trained. You may reuse the base model text encoder for inference.
Training settings
- Training epochs: 1
- Training steps: 500
- Learning rate: 5e-06
- Effective batch size: 12
- Micro-batch size: 6
- Gradient accumulation steps: 1
- Number of GPUs: 2
- Prediction type: flow-matching
- Rescaled betas zero SNR: False
- Optimizer: optimi-lion
- Precision: bf16
- Quantised: No
- Xformers: Not used
- LyCORIS Config:
{
"algo": "lokr",
"multiplier": 1.0,
"linear_dim": 10000,
"linear_alpha": 1,
"factor": 16,
"apply_preset": {
"target_module": [
"Attention",
"FeedForward"
],
"module_algo_map": {
"Attention": {
"factor": 16
},
"FeedForward": {
"factor": 8
}
}
}
}
Datasets
juggalos-aspect-bucket
- Repeats: 10
- Total number of images: ~26
- Total number of aspect buckets: 7
- Resolution: 0.262144 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
juggalos-crop
- Repeats: 10
- Total number of images: ~22
- Total number of aspect buckets: 1
- Resolution: 0.262144 megapixels
- Cropped: True
- Crop style: random
- Crop aspect: square
juggalos-aspect-bucket-1mp
- Repeats: 10
- Total number of images: ~26
- Total number of aspect buckets: 8
- Resolution: 1.048576 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
juggalos-crop-1mp
- Repeats: 10
- Total number of images: ~20
- Total number of aspect buckets: 1
- Resolution: 1.048576 megapixels
- Cropped: True
- Crop style: random
- Crop aspect: square
Inference
import torch
from diffusers import DiffusionPipeline
from lycoris import create_lycoris_from_weights
model_id = 'black-forest-labs/FLUX.1-dev'
adapter_id = 'pytorch_lora_weights.safetensors' # you will have to download this manually
lora_scale = 1.0
wrapper, _ = create_lycoris_from_weights(lora_scale, adapter_id, pipeline.transformer)
wrapper.merge_to()
prompt = "a juggalo holding a sign that says keepin it real"
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu')
image = pipeline(
prompt=prompt,
num_inference_steps=25,
generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(1641421826),
width=1024,
height=1024,
guidance_scale=3.4,
).images[0]
image.save("output.png", format="PNG")