RajkNakka commited on
Commit
53f1d31
·
1 Parent(s): 3793ac8

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +72 -0
README.md ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - marsyas/gtzan
7
+ metrics:
8
+ - accuracy
9
+ model-index:
10
+ - name: distilhubert-finetuned-gtzan-3
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # distilhubert-finetuned-gtzan-3
18
+
19
+ This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 0.5578
22
+ - Accuracy: 0.89
23
+
24
+ ## Model description
25
+
26
+ More information needed
27
+
28
+ ## Intended uses & limitations
29
+
30
+ More information needed
31
+
32
+ ## Training and evaluation data
33
+
34
+ More information needed
35
+
36
+ ## Training procedure
37
+
38
+ ### Training hyperparameters
39
+
40
+ The following hyperparameters were used during training:
41
+ - learning_rate: 0.0001
42
+ - train_batch_size: 16
43
+ - eval_batch_size: 16
44
+ - seed: 42
45
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
46
+ - lr_scheduler_type: linear
47
+ - lr_scheduler_warmup_ratio: 0.1
48
+ - num_epochs: 10
49
+ - mixed_precision_training: Native AMP
50
+
51
+ ### Training results
52
+
53
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
54
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
55
+ | 1.8069 | 1.0 | 57 | 1.7158 | 0.51 |
56
+ | 1.3469 | 2.0 | 114 | 1.2925 | 0.64 |
57
+ | 0.8341 | 3.0 | 171 | 0.8796 | 0.77 |
58
+ | 0.682 | 4.0 | 228 | 0.8847 | 0.69 |
59
+ | 0.3931 | 5.0 | 285 | 0.6189 | 0.84 |
60
+ | 0.26 | 6.0 | 342 | 0.5124 | 0.85 |
61
+ | 0.1744 | 7.0 | 399 | 0.6412 | 0.81 |
62
+ | 0.1053 | 8.0 | 456 | 0.6281 | 0.86 |
63
+ | 0.0655 | 9.0 | 513 | 0.5340 | 0.89 |
64
+ | 0.2067 | 10.0 | 570 | 0.5578 | 0.89 |
65
+
66
+
67
+ ### Framework versions
68
+
69
+ - Transformers 4.29.0
70
+ - Pytorch 2.0.1
71
+ - Datasets 2.12.0
72
+ - Tokenizers 0.13.2