|
--- |
|
license: other |
|
license_name: faipl-1.0-sd |
|
license_link: https://freedevproject.org/faipl-1.0-sd/ |
|
language: |
|
- en |
|
tags: |
|
- text-to-image |
|
- stable-diffusion |
|
- safetensors |
|
- stable-diffusion-xl |
|
base_model: cagliostrolab/animagine-xl-3.1 |
|
--- |
|
<style> |
|
.title-container { |
|
display: flex; |
|
justify-content: center; |
|
align-items: center; |
|
height: 100vh; /* Adjust this value to position the title vertically */ |
|
} |
|
|
|
.title { |
|
font-size: 2.5em; |
|
text-align: center; |
|
color: #333; |
|
font-family: 'Helvetica Neue', sans-serif; |
|
text-transform: uppercase; |
|
letter-spacing: 0.1em; |
|
padding: 0.5em 0; |
|
background: transparent; |
|
} |
|
|
|
.title span { |
|
background: -webkit-linear-gradient(45deg, #ADD899, #83B4FF); |
|
-webkit-background-clip: text; |
|
-webkit-text-fill-color: transparent; |
|
} |
|
|
|
.custom-table { |
|
table-layout: fixed; |
|
width: 100%; |
|
border-collapse: collapse; |
|
margin-top: 2em; |
|
} |
|
|
|
.custom-table td { |
|
width: 50%; |
|
vertical-align: top; |
|
padding: 10px; |
|
box-shadow: 0px 0px 0px 0px rgba(0, 0, 0, 0.15); |
|
} |
|
|
|
.custom-image-container { |
|
position: relative; |
|
width: 100%; |
|
margin-bottom: 0em; |
|
overflow: hidden; |
|
border-radius: 10px; |
|
transition: transform .7s; |
|
} |
|
|
|
.custom-image-container:hover { |
|
transform: scale(1.05); |
|
} |
|
|
|
.custom-image { |
|
width: 100%; |
|
height: auto; |
|
object-fit: cover; |
|
border-radius: 10px; |
|
transition: transform .7s; |
|
margin-bottom: 0em; |
|
} |
|
|
|
.nsfw-filter { |
|
filter: blur(8px); |
|
transition: filter 0.3s ease; |
|
} |
|
|
|
.custom-image-container:hover .nsfw-filter { |
|
filter: none; |
|
} |
|
|
|
.overlay { |
|
position: absolute; |
|
bottom: 0; |
|
left: 0; |
|
right: 0; |
|
color: white; |
|
width: 100%; |
|
height: 40%; |
|
display: flex; |
|
flex-direction: column; |
|
justify-content: center; |
|
align-items: center; |
|
font-size: 1vw; |
|
font-style: bold; |
|
text-align: center; |
|
opacity: 0; |
|
background: linear-gradient(0deg, rgba(0, 0, 0, 0.8) 60%, rgba(0, 0, 0, 0) 100%); |
|
transition: opacity .5s; |
|
} |
|
|
|
.custom-image-container:hover .overlay { |
|
opacity: 1; |
|
} |
|
|
|
.overlay-text { |
|
background: linear-gradient(45deg, #F1F8E8, #F1F8E8); |
|
-webkit-background-clip: text; |
|
color: transparent; |
|
text-shadow: 2px 2px 4px rgba(0, 0, 0, 0.7); |
|
} |
|
|
|
.overlay-subtext { |
|
font-size: 0.75em; |
|
margin-top: 0.5em; |
|
font-style: italic; |
|
} |
|
|
|
.overlay, |
|
.overlay-subtext { |
|
text-shadow: 2px 2px 4px rgba(0, 0, 0, 0.5); |
|
} |
|
</style> |
|
|
|
<h1 class="title"> |
|
<span>Rae Diffusion XL V2</span> |
|
</h1> |
|
|
|
<table class="custom-table"> |
|
<tr> |
|
<td> |
|
<div class="custom-image-container"> |
|
<img class="custom-image" src="https://cdn-uploads.huggingface.co/production/uploads/64b24543eec33e27dc9a6eca/m6udgsmJ6Afgg6lrx79MH.png" alt="Sample Image 1"> |
|
<div class="overlay"> |
|
<div class="overlay-text">Konno Junko</div> |
|
</div> |
|
</div> |
|
</td> |
|
<td> |
|
<div class="custom-image-container"> |
|
<img class="custom-image" src="https://cdn-uploads.huggingface.co/production/uploads/64b24543eec33e27dc9a6eca/LQF4iVbDSrV4Iy2lHnGD3.png" alt="Sample Image 2"> |
|
<div class="overlay"> |
|
<div class="overlay-text">Ryougi Shiki</div> |
|
</div> |
|
</div> |
|
</td> |
|
<td> |
|
<div class="custom-image-container"> |
|
<img class="custom-image" src="https://cdn-uploads.huggingface.co/production/uploads/64b24543eec33e27dc9a6eca/SW9p02hP4in4x63I3tRWp.png" alt="Sample Image 3"> |
|
<div class="overlay"> |
|
<div class="overlay-text">Korra</div> |
|
</div> |
|
</div> |
|
</td> |
|
</tr> |
|
<tr> |
|
<td> |
|
<div class="custom-image-container"> |
|
<img class="custom-image" src="https://cdn-uploads.huggingface.co/production/uploads/64b24543eec33e27dc9a6eca/MF03ubigFBAr2QlMp1a1N.png" alt="Sample Image 4"> |
|
<div class="overlay"> |
|
<div class="overlay-text">Toshinou Kyouko</div> |
|
</div> |
|
</div> |
|
</td> |
|
<td> |
|
<div class="custom-image-container"> |
|
<img class="custom-image" src="https://cdn-uploads.huggingface.co/production/uploads/64b24543eec33e27dc9a6eca/xdJ55uW4GSrZ4tbr59dTn.png" alt="Sample Image 5"> |
|
<div class="overlay"> |
|
<div class="overlay-text">Charlotte Dunois</div> |
|
</div> |
|
</div> |
|
</td> |
|
<td> |
|
<div class="custom-image-container"> |
|
<img class="custom-image" src="https://cdn-uploads.huggingface.co/production/uploads/64b24543eec33e27dc9a6eca/yEBNfOn5cxECvdzDOKf5A.png" alt="Sample Image 6"> |
|
<div class="overlay"> |
|
<div class="overlay-text">Sento Isuzu</div> |
|
</div> |
|
</div> |
|
</td> |
|
</tr> |
|
</table> |
|
|
|
## Overview |
|
Introducing **Rae Diffusion XL V2** , an enhanced iteration based on the Animagine XL 3.1 model, specifically fine-tuned for generating stunning anime-style artwork. **Rae Diffusion XL V2** is meticulously optimized to excel in depicting anime characters, pushing the boundaries of creativity. |
|
|
|
## Model Details |
|
- **Developed by**: [Raelina](https://civitai.com/user/Raelina) |
|
- **Model type**: Diffusion-based text-to-image generative model |
|
- **Model Description**: Rae Diffusion XL V2 is an enhanced iteration built on the Animagine XL 3.1 model. It is fine-tuned for high-quality anime-style character art generation. |
|
- **License**: [Fair AI Public License 1.0-SD](https://freedevproject.org/faipl-1.0-sd/) |
|
- **Finetuned from**: [Animagine XL 3.1](https://huggingface.co/cagliostrolab/animagine-xl-3.1) |
|
|
|
|
|
### Usage Guidelines |
|
## Tag Ordering |
|
For optimal results, it's recommended to follow the structured prompt template because we train the model like this: |
|
``` |
|
1girl/1boy, character name, from which series, everything else in any order. |
|
``` |
|
|
|
## Special Tag |
|
Rae Diffusion XL inherits special tags from Animagine XL 3.1 to enhance image generation by steering results toward quality, rating, creation date, and aesthetic. While the model can generate images without these tags, using them helps achieve better results. |
|
- **Quality tags:** masterpiece, best quality, great quality, good quality, normal quality, low quality, worst quality |
|
- **Rating tags:** safe, sensitive, nsfw, explicit |
|
- **Year tags:** newest, recent, mid, early, oldest |
|
- **Aesthetic tags:** very aesthetic, aesthetic, displeasing, very displeasing |
|
|
|
|
|
## Recommended settings |
|
|
|
- **Positive prompts:** |
|
|
|
``` |
|
masterpiece, best quality, very aesthetic, absurdres, |
|
``` |
|
|
|
- **Negative prompts:** |
|
``` |
|
(low quality, worst quality:1.2), very displeasing, ugly, poorly drawn, signature, watermark, |
|
``` |
|
|
|
- **CFG:** 7 |
|
- **Sampling steps:** 25 to 35 |
|
- **Sampler:** Euler a |
|
- **Supported Resolution:** |
|
``` |
|
1024 x 1024, 1152 x 896, 896 x 1152, 1216 x 832, 832 x 1216, 1344 x 768, 768 x 1344, 1536 x 640, 640 x 1536 |
|
``` |
|
|
|
## Hires.fix Setting |
|
- **Upscaler:** [4x_NMKD-YandereNeoXL](https://nmkd.de/?esrgan) |
|
- **Hires step:** 10-15 |
|
- **Denoising:** 0.1-0.3 or 0.55 for latent upscaler |
|
|
|
## Training config |
|
- Hardware: 1x A100 80GB |
|
- Batch size: 48 |
|
- Gradient Accumulation: 1 |
|
- Epochs: 10 |
|
- Learning Rate: 3e-6 |
|
- Optimizer: Adafactor |
|
- Optimizer Args: (Scale Parameter: False, Relative Step: False, Warmup Init: False) |
|
- Scheduler: Constant with warmup |
|
- Warmup steps: 0.05 |
|
- Noise offset: 0.0357 |
|
|
|
|
|
## License |
|
|
|
Rae Diffusion XL V2 now uses the [Fair AI Public License 1.0-SD](https://freedevproject.org/faipl-1.0-sd/) inherited from Animagine XL 3.1, compatible with Stable Diffusion models. Key points: |
|
1. **Modification Sharing:** If you modify Rae Diffusion XL, you must share both your changes and the original license. |
|
2. **Source Code Accessibility:** If your modified version is network-accessible, provide a way (like a download link) for others to get the source code. This applies to derived models too. |
|
3. **Distribution Terms:** Any distribution must be under this license or another with similar rules. |
|
4. **Compliance:** Non-compliance must be fixed within 30 days to avoid license termination, emphasizing transparency and adherence to open-source values. |
|
|