en_ncv / README.md
RaThorat's picture
Update README.md
0afc742
metadata
tags:
  - spacy
  - token-classification
language:
  - en
model-index:
  - name: en_ncv
    results:
      - task:
          name: NER
          type: token-classification
        metrics:
          - name: NER Precision
            type: precision
            value: 0.7012058955
          - name: NER Recall
            type: recall
            value: 0.626746507
          - name: NER F Score
            type: f_score
            value: 0.6618887015

Introduction

Three variants of the model is built with Spacy3 for grant applications. A simple named entity recognition custom model from scratch with annotation tool prodi.gy. Github info: https://github.com/RaThorat/ner_model_prodigy The most general model is 'en_grantss'. The model 'en_ncv' is more suitable to extract entities from narrative CV's.

Feature Description
Name en_ncv
Version 0.0.0
spaCy >=3.4.3,<3.5.0
Default Pipeline tok2vec, ner
Components tok2vec, ner
Vectors 0 keys, 0 unique vectors (0 dimensions)
Sources narrative CVs
License n/a
Author Rahul Thorat

Label Scheme

View label scheme (12 labels for 1 components)
Component Labels
ner ACTIVITY, GPE, KEYWORD, MEDIUM, MONEY, ORG, PERSON, POSITION, RECOGNITION, REPOSITORY, WEBSITE, YEAR

Accuracy

Type Score
ENTS_F 66.19
ENTS_P 70.12
ENTS_R 62.67
TOK2VEC_LOSS 786695.63
NER_LOSS 965558.77