Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
datasets:
|
3 |
+
- EleutherAI/pile
|
4 |
+
---
|
5 |
+
|
6 |
+
![RWKlogo.png](https://s3.amazonaws.com/moonup/production/uploads/62441d1d9fdefb55a0b7d12c/UWpP-lGRZJJDaEx_uUlDv.png)
|
7 |
+
|
8 |
+
# Model card for RWKV-4 | 14B parameters chat version (Raven)
|
9 |
+
|
10 |
+
RWKV is a project led by [Bo Peng](https://github.com/BlinkDL). Learn more about the model architecture in the blogposts from Johan Wind [here](https://johanwind.github.io/2023/03/23/rwkv_overview.html) and [here](https://johanwind.github.io/2023/03/23/rwkv_details.html). Learn more about the project by joining the [RWKV discord server](https://discordapp.com/users/468093332535640064).
|
11 |
+
|
12 |
+
# Table of contents
|
13 |
+
|
14 |
+
0. [TL;DR](#TL;DR)
|
15 |
+
1. [Model Details](#model-details)
|
16 |
+
2. [Usage](#usage)
|
17 |
+
3. [Citation](#citation)
|
18 |
+
|
19 |
+
## TL;DR
|
20 |
+
|
21 |
+
Below is the description from the [original repository](https://github.com/BlinkDL/RWKV-LM)
|
22 |
+
> RWKV is an RNN with transformer-level LLM performance. It can be directly trained like a GPT (parallelizable). It's combining the best of RNN and transformer - great performance, fast inference, saves VRAM, fast training, "infinite" ctx_len, and free sentence embedding.
|
23 |
+
|
24 |
+
## Model Details
|
25 |
+
|
26 |
+
The details of the architecture can be found on the blogpost mentioned above and the Hugging Face blogpost of the integration.
|
27 |
+
|
28 |
+
## Usage
|
29 |
+
|
30 |
+
### Convert the raw weights to the HF format
|
31 |
+
|
32 |
+
You can use the [`convert_rwkv_checkpoint_to_hf.py`](https://github.com/huggingface/transformers/tree/main/src/transformers/models/rwkv/convert_rwkv_checkpoint_to_hf.py) script by specifying the repo_id of the original weights, the filename and the output directory. You can also optionally directly push the converted model on the Hub by passing `--push_to_hub` flag and `--model_name` argument to specify where to push the converted weights.
|
33 |
+
|
34 |
+
```bash
|
35 |
+
python convert_rwkv_checkpoint_to_hf.py --repo_id RAW_HUB_REPO --checkpoint_file RAW_FILE --output_dir OUTPUT_DIR --push_to_hub --model_name dummy_user/converted-rwkv
|
36 |
+
```
|
37 |
+
|
38 |
+
### Generate text
|
39 |
+
|
40 |
+
You can use the `AutoModelForCausalLM` and `AutoTokenizer` classes to generate texts from the model. Expand the sections below to understand how to run the model in different scenarios:
|
41 |
+
The "Raven" models needs to be prompted in a specific way, learn more about that [in the integration blogpost](https://huggingface.co/blog/rwkv).
|
42 |
+
|
43 |
+
### Running the model on a CPU
|
44 |
+
|
45 |
+
<details>
|
46 |
+
<summary> Click to expand </summary>
|
47 |
+
|
48 |
+
```python
|
49 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
50 |
+
|
51 |
+
model = AutoModelForCausalLM.from_pretrained("RWKV/rwkv-raven-14b")
|
52 |
+
tokenizer = AutoTokenizer.from_pretrained("RWKV/rwkv-raven-14b")
|
53 |
+
|
54 |
+
prompt = "\nIn a shocking finding, scientist discovered a herd of dragons living in a remote, previously unexplored valley, in Tibet. Even more surprising to the researchers was the fact that the dragons spoke perfect Chinese."
|
55 |
+
|
56 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
57 |
+
output = model.generate(inputs["input_ids"], max_new_tokens=40)
|
58 |
+
print(tokenizer.decode(output[0].tolist(), skip_special_tokens=True))
|
59 |
+
```
|
60 |
+
|
61 |
+
|
62 |
+
### Running the model on a single GPU
|
63 |
+
|
64 |
+
<details>
|
65 |
+
<summary> Click to expand </summary>
|
66 |
+
|
67 |
+
```python
|
68 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
69 |
+
|
70 |
+
model = AutoModelForCausalLM.from_pretrained("RWKV/rwkv-raven-14b").to(0)
|
71 |
+
tokenizer = AutoTokenizer.from_pretrained("RWKV/rwkv-raven-14b")
|
72 |
+
|
73 |
+
prompt = "\nIn a shocking finding, scientist discovered a herd of dragons living in a remote, previously unexplored valley, in Tibet. Even more surprising to the researchers was the fact that the dragons spoke perfect Chinese."
|
74 |
+
|
75 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(0)
|
76 |
+
output = model.generate(inputs["input_ids"], max_new_tokens=40)
|
77 |
+
print(tokenizer.decode(output[0].tolist(), skip_special_tokens=True))
|
78 |
+
```
|
79 |
+
|
80 |
+
</details>
|
81 |
+
|
82 |
+
</details>
|
83 |
+
|
84 |
+
### Running the model in half-precision, on GPU
|
85 |
+
|
86 |
+
<details>
|
87 |
+
<summary> Click to expand </summary>
|
88 |
+
|
89 |
+
```python
|
90 |
+
import torch
|
91 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
92 |
+
|
93 |
+
model = AutoModelForCausalLM.from_pretrained("RWKV/rwkv-raven-14b", torch_dtype=torch.float16).to(0)
|
94 |
+
tokenizer = AutoTokenizer.from_pretrained("RWKV/rwkv-raven-14b")
|
95 |
+
|
96 |
+
prompt = "\nIn a shocking finding, scientist discovered a herd of dragons living in a remote, previously unexplored valley, in Tibet. Even more surprising to the researchers was the fact that the dragons spoke perfect Chinese."
|
97 |
+
|
98 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(0)
|
99 |
+
output = model.generate(inputs["input_ids"], max_new_tokens=40)
|
100 |
+
print(tokenizer.decode(output[0].tolist(), skip_special_tokens=True))
|
101 |
+
```
|
102 |
+
|
103 |
+
</details>
|
104 |
+
|
105 |
+
|
106 |
+
### Running the model multiple GPUs
|
107 |
+
<details>
|
108 |
+
<summary> Click to expand </summary>
|
109 |
+
|
110 |
+
```python
|
111 |
+
# pip install accelerate
|
112 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
113 |
+
|
114 |
+
model = AutoModelForCausalLM.from_pretrained("RWKV/rwkv-raven-14b", device_map="auto")
|
115 |
+
tokenizer = AutoTokenizer.from_pretrained("RWKV/rwkv-raven-14b")
|
116 |
+
|
117 |
+
prompt = "\nIn a shocking finding, scientist discovered a herd of dragons living in a remote, previously unexplored valley, in Tibet. Even more surprising to the researchers was the fact that the dragons spoke perfect Chinese."
|
118 |
+
|
119 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(0)
|
120 |
+
output = model.generate(inputs["input_ids"], max_new_tokens=40)
|
121 |
+
print(tokenizer.decode(output[0].tolist(), skip_special_tokens=True))
|
122 |
+
```
|
123 |
+
|
124 |
+
</details>
|
125 |
+
|
126 |
+
## Citation
|
127 |
+
|
128 |
+
If you use this model, please consider citing the original work, from the original repo [here](https://github.com/BlinkDL/ChatRWKV/)
|