KaleiNeely commited on
Commit
977a8a4
1 Parent(s): 4219d3d

Update tokenization_rwkv5.py

Browse files
Files changed (1) hide show
  1. tokenization_rwkv5.py +11 -242
tokenization_rwkv5.py CHANGED
@@ -15,238 +15,8 @@
15
  """Tokenization classes for RWKV5."""
16
 
17
  import os
18
- from typing import TYPE_CHECKING, List, Optional, Tuple
19
  import re
20
-
21
- from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer
22
- from transformers.utils import logging
23
-
24
-
25
- if TYPE_CHECKING:
26
- pass
27
-
28
- logger = logging.get_logger(__name__)
29
-
30
- VOCAB_FILES_NAMES = {
31
- "vocab_file": "vocab.txt",
32
- }
33
- PRETRAINED_VOCAB_FILES_MAP = {
34
- "vocab_file": {
35
- "ArthurZ/rwkv-5-utf": "https://huggingface.co/ArthurZ/rwkv-5-utf/blob/main/vocab.txt",
36
- },
37
- }
38
-
39
-
40
-
41
- def whitespace_tokenize(text):
42
- """Runs basic whitespace cleaning and splitting on a piece of text.
43
- The separators are kept
44
- """
45
- text = text.strip()
46
- if not text:
47
- return []
48
- tokens = re.split(b"(?= )", text)
49
- return tokens
50
-
51
-
52
- class WordpieceTokenizer(object):
53
- """Runs WordPiece tokenization."""
54
-
55
- def __init__(self, vocab, unk_token, max_input_chars_per_word=100):
56
- self.vocab = vocab
57
- self.unk_token = unk_token
58
- self.max_input_chars_per_word = max_input_chars_per_word
59
-
60
- def tokenize(self, text):
61
- """
62
- Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform
63
- tokenization using the given vocabulary.
64
-
65
- For example, `input = "unaffable"` wil return as output `["un", "##aff", "##able"]`.
66
-
67
- Args:
68
- text: A single token or whitespace separated tokens. This should have
69
- already been passed through *BasicTokenizer*.
70
-
71
- Returns:
72
- A list of wordpiece tokens.
73
- """
74
-
75
- output_tokens = []
76
- for token in whitespace_tokenize(text):
77
- chars = list(token)
78
- if len(chars) > self.max_input_chars_per_word:
79
- output_tokens.append(self.unk_token)
80
- continue
81
-
82
- is_bad = False
83
- start = 0
84
- sub_tokens = []
85
- while start < len(chars):
86
- end = len(chars)
87
- cur_substr = None
88
- while start < end:
89
- substr = bytes(chars[start:end])
90
- if substr in self.vocab:
91
- cur_substr = substr
92
- break
93
- end -= 1
94
- if cur_substr is None:
95
- is_bad = True
96
- break
97
- sub_tokens.append(cur_substr.decode())
98
- start = end
99
-
100
- if is_bad:
101
- output_tokens.append(self.unk_token)
102
- else:
103
- output_tokens.extend(sub_tokens)
104
- return output_tokens
105
-
106
-
107
- class Rwkv5Tokenizer(PreTrainedTokenizer):
108
- vocab_files_names = VOCAB_FILES_NAMES
109
- pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
110
- max_model_input_sizes = {"ArthurZ/rwkv-5-utf": 2048}
111
-
112
- model_input_names = ["input_ids", "attention_mask"]
113
-
114
- def __init__(self, vocab_file, bos_token="<s>", eos_token="<s>", unk_token="<s>", pad_token="<s>",**kwargs):
115
- if not os.path.isfile(vocab_file):
116
- raise ValueError(
117
- f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained"
118
- " model use `tokenizer = BertTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`"
119
- )
120
-
121
- with open(vocab_file, "r") as reader:
122
- tokens = reader.readlines()
123
- vocab = {}
124
- for index, token in enumerate(tokens):
125
- token = eval(token.rstrip("\n"))
126
- vocab[token] = index
127
-
128
- self.add_bos_token = True
129
- self.encoder = vocab
130
- self.decoder = {v: k for k, v in vocab.items()}
131
- self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.encoder, unk_token=str(unk_token))
132
- self._added_tokens_decoder = {0: AddedToken(str(bos_token))}
133
- super().__init__(bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, pad_token=pad_token, **kwargs)
134
-
135
- @property
136
- def vocab_size(self):
137
- return len(self.encoder)
138
-
139
- def get_vocab(self):
140
- vocab = {str(self.convert_ids_to_tokens(i)): i for i in range(self.vocab_size)}
141
- vocab.update(self.added_tokens_encoder)
142
- return vocab
143
-
144
- def _tokenize(self, text, split_special_tokens=False):
145
- return self.wordpiece_tokenizer.tokenize(text.encode("utf-8"))
146
-
147
- def _convert_token_to_id(self, token):
148
- """Converts a token (byte) to an id using the vocab."""
149
- if not isinstance(token, bytes):
150
- token = token.encode("utf-8", errors="replace")
151
- return self.encoder.get(token, self.unk_token_id)
152
-
153
- def _convert_id_to_token(self, index):
154
- """Converts an index (integer) in a token (byte) using the vocab."""
155
- token = self.decoder.get(index, self.unk_token)
156
- if isinstance(token, (bytes)):
157
- token = token.decode("utf-8", errors="replace")
158
- return token
159
-
160
- def convert_tokens_to_string(self, tokens):
161
- """Converts a sequence of tokens (bytes) in a single string. Additional tokens are encoded to bytes"""
162
- out_string = b"".join([k.encode(errors="replace") if isinstance(k, str) else k for k in tokens]).decode(
163
- "utf-8"
164
- )
165
- return out_string
166
-
167
- def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
168
- index = 0
169
- if os.path.isdir(save_directory):
170
- vocab_file = os.path.join(
171
- save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
172
- )
173
- else:
174
- vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory
175
- with open(vocab_file, "w") as writer:
176
- for token, token_index in sorted(self.encoder.items(), key=lambda kv: kv[1]):
177
- if index != token_index:
178
- logger.warning(
179
- f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive."
180
- " Please check that the vocabulary is not corrupted!"
181
- )
182
- index = token_index
183
- writer.write(str(token) + "\n")
184
- index += 1
185
- return (vocab_file,)
186
-
187
- def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
188
- if self.add_bos_token:
189
- bos_token_ids = [self.bos_token_id]
190
- else:
191
- bos_token_ids = []
192
-
193
- output = bos_token_ids + token_ids_0
194
-
195
- if token_ids_1 is None:
196
- return output
197
-
198
- return output + bos_token_ids + token_ids_1
199
-
200
- def get_special_tokens_mask(
201
- self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
202
- ) -> List[int]:
203
- """
204
- Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding
205
- special tokens using the tokenizer `prepare_for_model` or `encode_plus` methods.
206
-
207
- Args:
208
- token_ids_0 (`List[int]`):
209
- List of IDs.
210
- token_ids_1 (`List[int]`, *optional*):
211
- Optional second list of IDs for sequence pairs.
212
- already_has_special_tokens (`bool`, *optional*, defaults to `False`):
213
- Whether or not the token list is already formatted with special tokens for the model.
214
-
215
- Returns:
216
- `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
217
- """
218
- if already_has_special_tokens:
219
- return super().get_special_tokens_mask(
220
- token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
221
- )
222
-
223
- if not self.add_bos_token:
224
- return super().get_special_tokens_mask(
225
- token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=False
226
- )
227
-
228
- if token_ids_1 is None:
229
- return [1] + ([0] * len(token_ids_0))
230
- return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1))
231
- # coding=utf-8
232
- # Copyright 2024 The HuggingFace Inc. team.
233
- #
234
- # Licensed under the Apache License, Version 2.0 (the "License");
235
- # you may not use this file except in compliance with the License.
236
- # You may obtain a copy of the License at
237
- #
238
- # http://www.apache.org/licenses/LICENSE-2.0
239
- #
240
- # Unless required by applicable law or agreed to in writing, software
241
- # distributed under the License is distributed on an "AS IS" BASIS,
242
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
243
- # See the License for the specific language governing permissions and
244
- # limitations under the License.
245
- """Tokenization classes for RWKV5."""
246
-
247
- import os
248
  from typing import TYPE_CHECKING, List, Optional, Tuple
249
- import re
250
 
251
  from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer
252
  from transformers.utils import logging
@@ -267,7 +37,6 @@ PRETRAINED_VOCAB_FILES_MAP = {
267
  }
268
 
269
 
270
-
271
  def whitespace_tokenize(text):
272
  """Runs basic whitespace cleaning and splitting on a piece of text.
273
  The separators are kept
@@ -282,10 +51,9 @@ def whitespace_tokenize(text):
282
  class WordpieceTokenizer(object):
283
  """Runs WordPiece tokenization."""
284
 
285
- def __init__(self, vocab, unk_token, max_input_chars_per_word=100):
286
  self.vocab = vocab
287
  self.unk_token = unk_token
288
- self.max_input_chars_per_word = max_input_chars_per_word
289
 
290
  def tokenize(self, text):
291
  """
@@ -305,10 +73,6 @@ class WordpieceTokenizer(object):
305
  output_tokens = []
306
  for token in whitespace_tokenize(text):
307
  chars = list(token)
308
- if len(chars) > self.max_input_chars_per_word:
309
- output_tokens.append(self.unk_token)
310
- continue
311
-
312
  is_bad = False
313
  start = 0
314
  sub_tokens = []
@@ -324,9 +88,12 @@ class WordpieceTokenizer(object):
324
  if cur_substr is None:
325
  is_bad = True
326
  break
327
- sub_tokens.append(cur_substr.decode())
 
 
 
 
328
  start = end
329
-
330
  if is_bad:
331
  output_tokens.append(self.unk_token)
332
  else:
@@ -341,7 +108,7 @@ class Rwkv5Tokenizer(PreTrainedTokenizer):
341
 
342
  model_input_names = ["input_ids", "attention_mask"]
343
 
344
- def __init__(self, vocab_file, bos_token="<s>", eos_token="<s>", unk_token="<s>", pad_token="<s>",**kwargs):
345
  if not os.path.isfile(vocab_file):
346
  raise ValueError(
347
  f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained"
@@ -360,7 +127,7 @@ class Rwkv5Tokenizer(PreTrainedTokenizer):
360
  self.decoder = {v: k for k, v in vocab.items()}
361
  self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.encoder, unk_token=str(unk_token))
362
  self._added_tokens_decoder = {0: AddedToken(str(bos_token))}
363
- super().__init__(bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, pad_token=pad_token, **kwargs)
364
 
365
  @property
366
  def vocab_size(self):
@@ -376,7 +143,9 @@ class Rwkv5Tokenizer(PreTrainedTokenizer):
376
 
377
  def _convert_token_to_id(self, token):
378
  """Converts a token (byte) to an id using the vocab."""
379
- if not isinstance(token, bytes):
 
 
380
  token = token.encode("utf-8", errors="replace")
381
  return self.encoder.get(token, self.unk_token_id)
382
 
 
15
  """Tokenization classes for RWKV5."""
16
 
17
  import os
 
18
  import re
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
  from typing import TYPE_CHECKING, List, Optional, Tuple
 
20
 
21
  from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer
22
  from transformers.utils import logging
 
37
  }
38
 
39
 
 
40
  def whitespace_tokenize(text):
41
  """Runs basic whitespace cleaning and splitting on a piece of text.
42
  The separators are kept
 
51
  class WordpieceTokenizer(object):
52
  """Runs WordPiece tokenization."""
53
 
54
+ def __init__(self, vocab, unk_token):
55
  self.vocab = vocab
56
  self.unk_token = unk_token
 
57
 
58
  def tokenize(self, text):
59
  """
 
73
  output_tokens = []
74
  for token in whitespace_tokenize(text):
75
  chars = list(token)
 
 
 
 
76
  is_bad = False
77
  start = 0
78
  sub_tokens = []
 
88
  if cur_substr is None:
89
  is_bad = True
90
  break
91
+ try:
92
+ cur_substr = cur_substr.decode()
93
+ except UnicodeDecodeError:
94
+ cur_substr = str(cur_substr)
95
+ sub_tokens.append(cur_substr)
96
  start = end
 
97
  if is_bad:
98
  output_tokens.append(self.unk_token)
99
  else:
 
108
 
109
  model_input_names = ["input_ids", "attention_mask"]
110
 
111
+ def __init__(self, vocab_file, bos_token="<s>", eos_token="<s>", unk_token="<s>", **kwargs):
112
  if not os.path.isfile(vocab_file):
113
  raise ValueError(
114
  f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained"
 
127
  self.decoder = {v: k for k, v in vocab.items()}
128
  self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.encoder, unk_token=str(unk_token))
129
  self._added_tokens_decoder = {0: AddedToken(str(bos_token))}
130
+ super().__init__(bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, **kwargs)
131
 
132
  @property
133
  def vocab_size(self):
 
143
 
144
  def _convert_token_to_id(self, token):
145
  """Converts a token (byte) to an id using the vocab."""
146
+ if token.startswith("b'\\"):
147
+ token = eval(token)
148
+ elif not isinstance(token, bytes):
149
  token = token.encode("utf-8", errors="replace")
150
  return self.encoder.get(token, self.unk_token_id)
151