Kearm commited on
Commit
0cb704c
·
verified ·
1 Parent(s): eff2e75

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +165 -2
README.md CHANGED
@@ -5,13 +5,18 @@ library_name: transformers
5
  tags:
6
  - mergekit
7
  - merge
8
-
9
  ---
10
- # Qwen7B-Instruct-Small
11
 
12
  This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).
13
 
14
  ## Merge Details
 
 
 
 
 
15
  ### Merge Method
16
 
17
  This model was merged using the passthrough merge method.
@@ -37,3 +42,161 @@ slices:
37
  merge_method: passthrough
38
  dtype: bfloat16
39
  ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
  tags:
6
  - mergekit
7
  - merge
8
+ license: apache-2.0
9
  ---
10
+ # Qwen5B-Instruct
11
 
12
  This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).
13
 
14
  ## Merge Details
15
+
16
+ Used the https://github.com/arcee-ai/PruneMe reposity and https://github.com/arcee-ai/mergekit to create a 5ishB parameter model to test the hypothesis of https://arxiv.org/abs/2403.17887
17
+
18
+ ### WARNING THIS MODEL IS VERY LIKELY NOT USEFUL FOR ANYTHING YET
19
+
20
  ### Merge Method
21
 
22
  This model was merged using the passthrough merge method.
 
42
  merge_method: passthrough
43
  dtype: bfloat16
44
  ```
45
+ # Orignal Model Card Below
46
+
47
+ # Qwen2-7B-Instruct
48
+
49
+ ## Introduction
50
+
51
+ Qwen2 is the new series of Qwen large language models. For Qwen2, we release a number of base language models and instruction-tuned language models ranging from 0.5 to 72 billion parameters, including a Mixture-of-Experts model. This repo contains the instruction-tuned 7B Qwen2 model.
52
+
53
+ Compared with the state-of-the-art opensource language models, including the previous released Qwen1.5, Qwen2 has generally surpassed most opensource models and demonstrated competitiveness against proprietary models across a series of benchmarks targeting for language understanding, language generation, multilingual capability, coding, mathematics, reasoning, etc.
54
+
55
+ Qwen2-7B-Instruct supports a context length of up to 131,072 tokens, enabling the processing of extensive inputs. Please refer to [this section](#processing-long-texts) for detailed instructions on how to deploy Qwen2 for handling long texts.
56
+
57
+ For more details, please refer to our [blog](https://qwenlm.github.io/blog/qwen2/), [GitHub](https://github.com/QwenLM/Qwen2), and [Documentation](https://qwen.readthedocs.io/en/latest/).
58
+ <br>
59
+
60
+ ## Model Details
61
+ Qwen2 is a language model series including decoder language models of different model sizes. For each size, we release the base language model and the aligned chat model. It is based on the Transformer architecture with SwiGLU activation, attention QKV bias, group query attention, etc. Additionally, we have an improved tokenizer adaptive to multiple natural languages and codes.
62
+
63
+ ## Training details
64
+ We pretrained the models with a large amount of data, and we post-trained the models with both supervised finetuning and direct preference optimization.
65
+
66
+
67
+ ## Requirements
68
+ The code of Qwen2 has been in the latest Hugging face transformers and we advise you to install `transformers>=4.37.0`, or you might encounter the following error:
69
+ ```
70
+ KeyError: 'qwen2'
71
+ ```
72
+
73
+ ## Quickstart
74
+
75
+ Here provides a code snippet with `apply_chat_template` to show you how to load the tokenizer and model and how to generate contents.
76
+
77
+ ```python
78
+ from transformers import AutoModelForCausalLM, AutoTokenizer
79
+ device = "cuda" # the device to load the model onto
80
+
81
+ model = AutoModelForCausalLM.from_pretrained(
82
+ "Qwen/Qwen2-7B-Instruct",
83
+ torch_dtype="auto",
84
+ device_map="auto"
85
+ )
86
+ tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-7B-Instruct")
87
+
88
+ prompt = "Give me a short introduction to large language model."
89
+ messages = [
90
+ {"role": "system", "content": "You are a helpful assistant."},
91
+ {"role": "user", "content": prompt}
92
+ ]
93
+ text = tokenizer.apply_chat_template(
94
+ messages,
95
+ tokenize=False,
96
+ add_generation_prompt=True
97
+ )
98
+ model_inputs = tokenizer([text], return_tensors="pt").to(device)
99
+
100
+ generated_ids = model.generate(
101
+ model_inputs.input_ids,
102
+ max_new_tokens=512
103
+ )
104
+ generated_ids = [
105
+ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
106
+ ]
107
+
108
+ response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
109
+ ```
110
+
111
+ ### Processing Long Texts
112
+
113
+ To handle extensive inputs exceeding 32,768 tokens, we utilize [YARN](https://arxiv.org/abs/2309.00071), a technique for enhancing model length extrapolation, ensuring optimal performance on lengthy texts.
114
+
115
+ For deployment, we recommend using vLLM. You can enable the long-context capabilities by following these steps:
116
+
117
+ 1. **Install vLLM**: You can install vLLM by running the following command.
118
+
119
+ ```bash
120
+ pip install "vllm>=0.4.3"
121
+ ```
122
+
123
+ Or you can install vLLM from [source](https://github.com/vllm-project/vllm/).
124
+
125
+ 2. **Configure Model Settings**: After downloading the model weights, modify the `config.json` file by including the below snippet:
126
+ ```json
127
+ {
128
+ "architectures": [
129
+ "Qwen2ForCausalLM"
130
+ ],
131
+ // ...
132
+ "vocab_size": 152064,
133
+
134
+ // adding the following snippets
135
+ "rope_scaling": {
136
+ "factor": 4.0,
137
+ "original_max_position_embeddings": 32768,
138
+ "type": "yarn"
139
+ }
140
+ }
141
+ ```
142
+ This snippet enable YARN to support longer contexts.
143
+
144
+ 3. **Model Deployment**: Utilize vLLM to deploy your model. For instance, you can set up an openAI-like server using the command:
145
+
146
+ ```bash
147
+ python -m vllm.entrypoints.openai.api_server --served-model-name Qwen2-7B-Instruct --model path/to/weights
148
+ ```
149
+
150
+ Then you can access the Chat API by:
151
+
152
+ ```bash
153
+ curl http://localhost:8000/v1/chat/completions \
154
+ -H "Content-Type: application/json" \
155
+ -d '{
156
+ "model": "Qwen2-7B-Instruct",
157
+ "messages": [
158
+ {"role": "system", "content": "You are a helpful assistant."},
159
+ {"role": "user", "content": "Your Long Input Here."}
160
+ ]
161
+ }'
162
+ ```
163
+
164
+ For further usage instructions of vLLM, please refer to our [Github](https://github.com/QwenLM/Qwen2).
165
+
166
+ **Note**: Presently, vLLM only supports static YARN, which means the scaling factor remains constant regardless of input length, **potentially impacting performance on shorter texts**. We advise adding the `rope_scaling` configuration only when processing long contexts is required.
167
+
168
+ ## Evaluation
169
+
170
+ We briefly compare Qwen2-7B-Instruct with similar-sized instruction-tuned LLMs, including Qwen1.5-7B-Chat. The results are shown below:
171
+
172
+ | Datasets | Llama-3-8B-Instruct | Yi-1.5-9B-Chat | GLM-4-9B-Chat | Qwen1.5-7B-Chat | Qwen2-7B-Instruct |
173
+ | :--- | :---: | :---: | :---: | :---: | :---: |
174
+ | _**English**_ | | | | | |
175
+ | MMLU | 68.4 | 69.5 | **72.4** | 59.5 | 70.5 |
176
+ | MMLU-Pro | 41.0 | - | - | 29.1 | **44.1** |
177
+ | GPQA | **34.2** | - | **-** | 27.8 | 25.3 |
178
+ | TheroemQA | 23.0 | - | - | 14.1 | **25.3** |
179
+ | MT-Bench | 8.05 | 8.20 | 8.35 | 7.60 | **8.41** |
180
+ | _**Coding**_ | | | | | |
181
+ | Humaneval | 62.2 | 66.5 | 71.8 | 46.3 | **79.9** |
182
+ | MBPP | **67.9** | - | - | 48.9 | 67.2 |
183
+ | MultiPL-E | 48.5 | - | - | 27.2 | **59.1** |
184
+ | Evalplus | 60.9 | - | - | 44.8 | **70.3** |
185
+ | LiveCodeBench | 17.3 | - | - | 6.0 | **26.6** |
186
+ | _**Mathematics**_ | | | | | |
187
+ | GSM8K | 79.6 | **84.8** | 79.6 | 60.3 | 82.3 |
188
+ | MATH | 30.0 | 47.7 | **50.6** | 23.2 | 49.6 |
189
+ | _**Chinese**_ | | | | | |
190
+ | C-Eval | 45.9 | - | 75.6 | 67.3 | **77.2** |
191
+ | AlignBench | 6.20 | 6.90 | 7.01 | 6.20 | **7.21** |
192
+
193
+ ## Citation
194
+
195
+ If you find our work helpful, feel free to give us a cite.
196
+
197
+ ```
198
+ @article{qwen2,
199
+ title={Qwen2 Technical Report},
200
+ year={2024}
201
+ }
202
+ ```