metadata
language: et
datasets:
- mozilla-foundation/common_voice_8_0
metrics:
- wer
- cer
tags:
- generated_from_trainer
- mozilla-foundation/common_voice_8_0
- audio
- automatic-speech-recognition
- speech
- robust-speech-event
- hf-asr-leaderboard
model-index:
- name: XLS-R 1B Wav2Vec2 Estonian by Rasmus Toivanen
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 8
type: mozilla-foundation/common_voice_8_0
args: et
metrics:
- name: Test WER
type: wer
value: 20.12
- name: Test CER
type: cer
value: 3.82
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Robust Speech Event - Dev Data
type: speech-recognition-community-v2/dev_data
args: et
metrics:
- name: Test WER
type: wer
value: 40.77
- name: Test CER
type: cer
value: 12.32
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Robust Speech Event - Test Data
type: speech-recognition-community-v2/eval_data
args: et
metrics:
- name: Test WER
type: wer
value: 41.97
wav2vec2-xlsr-et-lm-1B
This model was finetuned with mozilla_foundation/common_voice_8_0 et with train+other+validation splits. It achieves the following results on the test set: (Loss reported with last eval step at step 2000/2040 during training)
- Loss: 0.2150
- Wer: 0.2012
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.00005
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 1
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
Framework versions
- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu102
- Datasets 1.18.3
- Tokenizers 0.11.0