|
--- |
|
library_name: transformers |
|
license: gemma |
|
base_model: |
|
- google/gemma-2-9b |
|
--- |
|
This gemma2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. |
|
|
|
# 概要 |
|
松尾研大規模言語モデル講座2024のコンペ用の提出モデル作成の一環として作成・公開しています。 |
|
|
|
# 推論方法 |
|
|
|
以下は、Google Colaboratoryでelyza-tasks-100-TV.jsonlを回答するためのコードです |
|
|
|
```python |
|
%%capture |
|
!pip install unsloth |
|
!pip uninstall unsloth -y && pip install --upgrade --no-cache-dir "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git" |
|
!pip install -U torch |
|
!pip install -U peft |
|
|
|
from peft import PeftModel |
|
import torch |
|
import json |
|
from tqdm import tqdm |
|
import re |
|
|
|
import os |
|
HF_TOKEN = 'YOUR_TOKEN' |
|
os.environ["HF_TOKEN"] = HF_TOKEN |
|
|
|
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig |
|
|
|
# モデルとトークナイザーのID |
|
new_model_id = "R-Nakamoto/gemma-2-9b-it" |
|
|
|
bnb_config = BitsAndBytesConfig( |
|
load_in_4bit=True, |
|
bnb_4bit_quant_type="nf4", |
|
bnb_4bit_compute_dtype=torch.bfloat16, |
|
) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
new_model_id, |
|
quantization_config=bnb_config, |
|
device_map="auto", |
|
attn_implementation="eager" |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained( |
|
new_model_id, |
|
trust_remote_code=True, |
|
use_fast=True |
|
) |
|
|
|
|
|
datasets = [] |
|
with open("elyza-tasks-100-TV_0.jsonl", "r") as f: |
|
item = "" |
|
for line in f: |
|
line = line.strip() |
|
item += line |
|
if item.endswith("}"): |
|
datasets.append(json.loads(item)) |
|
item = "" |
|
|
|
import torch |
|
torch.cuda.empty_cache() |
|
|
|
# モデルを推論モードに設定 |
|
model.eval() |
|
|
|
# トークナイザーの設定 |
|
tokenizer.padding_side = 'left' |
|
model.config.use_cache = True |
|
|
|
# バッチサイズと最大長を設定 |
|
batch_size = 8 |
|
max_length = 512 |
|
results = [] |
|
|
|
# プロンプトテンプレート |
|
template_text = '以下は、タスクを説明する指示です。要求を適切に満たす応答を書きなさい。\n\n' |
|
kaitou = '回答' |
|
|
|
# バッチ処理の開始 |
|
for i in tqdm(range(0, len(datasets), batch_size)): |
|
# バッチ単位でデータを取得 |
|
batch = datasets[i:i + batch_size] |
|
|
|
# プロンプト作成 |
|
prompts = [ |
|
f"### 指示\n{dt['input']}\n### 回答\n" |
|
for dt in batch |
|
] |
|
|
|
# トークン化 |
|
inputs = tokenizer(prompts, return_tensors="pt", padding=True, truncation=True, max_length=max_length) |
|
|
|
# データを非同期でGPUに転送 |
|
inputs = {key: value.to(model.device, non_blocking=True) for key, value in inputs.items()} |
|
|
|
# 推論の設定 |
|
max_new_tokens = 512 |
|
repetition_penalty = 1.2 |
|
length_penalty = 1.0 |
|
use_cache = True |
|
num_beams = 3 # ビームサーチのビーム幅 |
|
|
|
# 推論(サンプリングを無効化し、決定論的な生成に) |
|
with torch.no_grad(): |
|
outputs = model.generate( |
|
**inputs, |
|
max_new_tokens=max_new_tokens, |
|
repetition_penalty=repetition_penalty, |
|
length_penalty=length_penalty, |
|
num_beams=num_beams, # ビームサーチを有効化 |
|
do_sample=False, # サンプリングを無効化 |
|
use_cache=use_cache |
|
) |
|
|
|
# 結果の処理 |
|
for dt, output in zip(batch, outputs): |
|
prediction = tokenizer.decode(output, skip_special_tokens=True).split(f"\n### {kaitou}\n")[-1] |
|
results.append({ |
|
"task_id": dt["task_id"], |
|
"input": dt["input"], |
|
"output": prediction |
|
}) |
|
|
|
with open(f"output.jsonl", 'w', encoding='utf-8') as f: |
|
for result in results: |
|
json.dump(result, f, ensure_ascii=False) |
|
f.write('\n') |
|
``` |
|
|