update
Browse files- README.md +568 -0
- tokenization_qwen.py +7 -9
README.md
ADDED
@@ -0,0 +1,568 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- zh
|
4 |
+
- en
|
5 |
+
tags:
|
6 |
+
- qwen
|
7 |
+
pipeline_tag: text-generation
|
8 |
+
inference: false
|
9 |
+
---
|
10 |
+
|
11 |
+
# Qwen-VL
|
12 |
+
|
13 |
+
<br>
|
14 |
+
|
15 |
+
<p align="center">
|
16 |
+
<img src="https://qianwen-res.oss-cn-beijing.aliyuncs.com/logo.jpg" width="400"/>
|
17 |
+
<p>
|
18 |
+
<br>
|
19 |
+
|
20 |
+
<p align="center">
|
21 |
+
Qwen-VL <a href="https://modelscope.cn/models/qwen/Qwen-VL/summary">🤖 <a> | <a href="https://huggingface.co/Qwen/Qwen-VL">🤗</a>  | Qwen-VL-Chat <a href="https://modelscope.cn/models/qwen/Qwen-VL-Chat/summary">🤖 <a>| <a href="https://huggingface.co/Qwen/Qwen-VL-Chat">🤗</a>  |  <a href="https://modelscope.cn/studios/qwen/Qwen-VL-Chat-Demo/summary">Demo</a>  |  <a href="https://github.com/QwenLM/Qwen-VL/blob/main/visual_memo.md">Report</a>   |   <a href="https://discord.gg/9bjvspyu">Discord</a>
|
22 |
+
|
23 |
+
</p>
|
24 |
+
<br>
|
25 |
+
|
26 |
+
<p align="center">
|
27 |
+
<a href="README_CN.md">中文</a>  |   English
|
28 |
+
</p>
|
29 |
+
<br><br>
|
30 |
+
|
31 |
+
**Qwen-VL** (Qwen Large Vision Language Model) is the visual multimodal version of the large model series, Qwen (abbr. Tongyi Qianwen), proposed by Alibaba Cloud. Qwen-VL accepts image, text, and bounding box as inputs, outputs text and bounding box. The features of Qwen-VL include:
|
32 |
+
- **Strong performance**: It significantly surpasses existing open-source Large Vision Language Models (LVLM) under similar scale settings on multiple English evaluation benchmarks (including Zero-shot caption, VQA, DocVQA, and Grounding).
|
33 |
+
- **Multi-lingual LVLM support text recognization**: Qwen-VL naturally supports multi-lingual conversation, and it promotes end-to-end recognition of Chinese and English bi-lingual text in images.
|
34 |
+
- **Multi-image interleaved conversations**: This feature allows for the input and comparison of multiple images, as well as the ability to specify questions related to the images and engage in multi-image storytelling.
|
35 |
+
- **First generalist model support grounding in Chinese**: Detecting bounding boxes through open-domain language expression in both Chinese and English.
|
36 |
+
- **Fine-grained recognization and understanding**: Compared to the 224 resolution currently used by other open-source LVLM, the 448 resolution promotes fine-grained text recognition, document QA, and bounding box annotation.
|
37 |
+
|
38 |
+
<br>
|
39 |
+
<p align="center">
|
40 |
+
<img src="assets/demo_vl.gif" width="400"/>
|
41 |
+
<p>
|
42 |
+
<br>
|
43 |
+
|
44 |
+
We release two models of the Qwen-VL series:
|
45 |
+
- Qwen-VL: The pre-trained LVLM model uses Qwen-7B as the initialization of the LLM, and [Openclip ViT-bigG](https://github.com/mlfoundations/open_clip) as the initialization of the visual encoder. And connects them with a randomly initialized cross-attention layer. Qwen-VL was trained on about 1.5B image-text paired data. The final image input resolution is 448.
|
46 |
+
- Qwen-VL-Chat: A multimodal LLM-based AI assistant, which is trained with alignment techniques.
|
47 |
+
|
48 |
+
For more details about Qwen-VL, please refer to our [technical memo](visual_memo.md).
|
49 |
+
|
50 |
+
## Evaluation
|
51 |
+
|
52 |
+
We evaluated the model's ability from two perspectives:
|
53 |
+
1. **Standard Benchmarks**: We evaluate the model's basic task capabilities on four major categories of multimodal tasks:
|
54 |
+
- Zero-shot Caption: Evaluate model's zero-shot image captioning ability on unseen datasets;
|
55 |
+
- General VQA: Evaluate the general question-answering ability of pictures, such as the judgment, color, number, category, etc;
|
56 |
+
- Text-based VQA: Evaluate the model's ability to recognize text in pictures, such as document QA, chart QA, etc;
|
57 |
+
- Referring Expression Comprehension: Evaluate the ability to localize a target object in an image described by a referring expression.
|
58 |
+
|
59 |
+
2. **TouchStone**: To evaluate the overall text-image dialogue capability and alignment level with humans, we have constructed a benchmark called TouchStone, which is based on scoring with GPT4 to evaluate the LVLM model.
|
60 |
+
- The TouchStone benchmark covers a total of 300+ images, 800+ questions, and 27 categories. Such as attribute-based Q&A, celebrity recognition, writing poetry, summarizing multiple images, product comparison, math problem solving, etc;
|
61 |
+
- In order to break the current limitation of GPT4 in terms of direct image input, TouchStone provides fine-grained image annotations by human labeling. These detailed annotations, along with the questions and the model's output, are then presented to GPT4 for scoring.
|
62 |
+
- The benchmark includes both English and Chinese versions.
|
63 |
+
|
64 |
+
The results of the evaluation are as follows:
|
65 |
+
|
66 |
+
Qwen-VL outperforms current SOTA generalist models on multiple VL tasks and has a more comprehensive coverage in terms of capability range.
|
67 |
+
|
68 |
+
<p align="center">
|
69 |
+
<img src="https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/radar.png" width="600"/>
|
70 |
+
<p>
|
71 |
+
|
72 |
+
### Zero-shot Caption & General VQA
|
73 |
+
<table>
|
74 |
+
<thead>
|
75 |
+
<tr>
|
76 |
+
<th rowspan="2">Model type</th>
|
77 |
+
<th rowspan="2">Model</th>
|
78 |
+
<th colspan="2">Zero-shot Caption</th>
|
79 |
+
<th colspan="5">General VQA</th>
|
80 |
+
</tr>
|
81 |
+
<tr>
|
82 |
+
<th>NoCaps</th>
|
83 |
+
<th>Flickr30K</th>
|
84 |
+
<th>VQAv2<sup>dev</sup></th>
|
85 |
+
<th>OK-VQA</th>
|
86 |
+
<th>GQA</th>
|
87 |
+
<th>SciQA-Img<br>(0-shot)</th>
|
88 |
+
<th>VizWiz<br>(0-shot)</th>
|
89 |
+
</tr>
|
90 |
+
</thead>
|
91 |
+
<tbody align="center">
|
92 |
+
<tr>
|
93 |
+
<td rowspan="12">Generalist<br>Models</td>
|
94 |
+
<td>Flamingo-9B</td>
|
95 |
+
<td>-</td>
|
96 |
+
<td>61.5</td>
|
97 |
+
<td>51.8</td>
|
98 |
+
<td>44.7</td>
|
99 |
+
<td>-</td>
|
100 |
+
<td>-</td>
|
101 |
+
<td>28.8</td>
|
102 |
+
</tr>
|
103 |
+
<tr>
|
104 |
+
<td>Flamingo-80B</td>
|
105 |
+
<td>-</td>
|
106 |
+
<td>67.2</td>
|
107 |
+
<td>56.3</td>
|
108 |
+
<td>50.6</td>
|
109 |
+
<td>-</td>
|
110 |
+
<td>-</td>
|
111 |
+
<td>31.6</td>
|
112 |
+
</tr>
|
113 |
+
<tr>
|
114 |
+
<td>Unified-IO-XL</td>
|
115 |
+
<td>100.0</td>
|
116 |
+
<td>-</td>
|
117 |
+
<td>77.9</td>
|
118 |
+
<td>54.0</td>
|
119 |
+
<td>-</td>
|
120 |
+
<td>-</td>
|
121 |
+
<td>-</td>
|
122 |
+
</tr>
|
123 |
+
<tr>
|
124 |
+
<td>Kosmos-1</td>
|
125 |
+
<td>-</td>
|
126 |
+
<td>67.1</td>
|
127 |
+
<td>51.0</td>
|
128 |
+
<td>-</td>
|
129 |
+
<td>-</td>
|
130 |
+
<td>-</td>
|
131 |
+
<td>29.2</td>
|
132 |
+
</tr>
|
133 |
+
<tr>
|
134 |
+
<td>Kosmos-2</td>
|
135 |
+
<td>-</td>
|
136 |
+
<td>66.7</td>
|
137 |
+
<td>45.6</td>
|
138 |
+
<td>-</td>
|
139 |
+
<td>-</td>
|
140 |
+
<td>-</td>
|
141 |
+
<td>-</td>
|
142 |
+
</tr>
|
143 |
+
<tr>
|
144 |
+
<td>BLIP-2 (Vicuna-13B)</td>
|
145 |
+
<td>103.9</td>
|
146 |
+
<td>71.6</td>
|
147 |
+
<td>65.0</td>
|
148 |
+
<td>45.9</td>
|
149 |
+
<td>32.3</td>
|
150 |
+
<td>61.0</td>
|
151 |
+
<td>19.6</td>
|
152 |
+
</tr>
|
153 |
+
<tr>
|
154 |
+
<td>InstructBLIP (Vicuna-13B)</td>
|
155 |
+
<td><strong>121.9</strong></td>
|
156 |
+
<td>82.8</td>
|
157 |
+
<td>-</td>
|
158 |
+
<td>-</td>
|
159 |
+
<td>49.5</td>
|
160 |
+
<td>63.1</td>
|
161 |
+
<td>33.4</td>
|
162 |
+
</tr>
|
163 |
+
<tr>
|
164 |
+
<td>Shikra (Vicuna-13B)</td>
|
165 |
+
<td>-</td>
|
166 |
+
<td>73.9</td>
|
167 |
+
<td>77.36</td>
|
168 |
+
<td>47.16</td>
|
169 |
+
<td>-</td>
|
170 |
+
<td>-</td>
|
171 |
+
<td>-</td>
|
172 |
+
</tr>
|
173 |
+
<tr>
|
174 |
+
<td><strong>Qwen-VL (Qwen-7B)</strong></td>
|
175 |
+
<td>121.4</td>
|
176 |
+
<td><b>85.8</b></td>
|
177 |
+
<td><b>78.8</b></td>
|
178 |
+
<td><b>58.6</b></td>
|
179 |
+
<td><b>59.3</b></td>
|
180 |
+
<td><b>67.1</b></td>
|
181 |
+
<td><b>34.3</b></td>
|
182 |
+
</tr>
|
183 |
+
<tr>
|
184 |
+
<td>Qwen-VL (4-shot)</td>
|
185 |
+
<td>-</td>
|
186 |
+
<td>-</td>
|
187 |
+
<td>-</td>
|
188 |
+
<td>63.6</td>
|
189 |
+
<td>-</td>
|
190 |
+
<td>-</td>
|
191 |
+
<td>39.1</td>
|
192 |
+
</tr>
|
193 |
+
<tr>
|
194 |
+
<td>Qwen-VL-Chat</td>
|
195 |
+
<td>-</td>
|
196 |
+
<td>81.5</td>
|
197 |
+
<td>-</td>
|
198 |
+
<td>56.69</td>
|
199 |
+
<td>-</td>
|
200 |
+
<td>68.22</td>
|
201 |
+
<td>37.05</td>
|
202 |
+
</tr>
|
203 |
+
<tr>
|
204 |
+
<td>Qwen-VL-Chat (4-shot)</td>
|
205 |
+
<td>-</td>
|
206 |
+
<td>-</td>
|
207 |
+
<td>-</td>
|
208 |
+
<td>60.6</td>
|
209 |
+
<td>-</td>
|
210 |
+
<td>-</td>
|
211 |
+
<td>45.5</td>
|
212 |
+
</tr>
|
213 |
+
<tr>
|
214 |
+
<td>Previous SOTA<br>(Per Task Fine-tuning)</td>
|
215 |
+
<td>-</td>
|
216 |
+
<td>127.0<br>(PALI-17B)</td>
|
217 |
+
<td>84.5<br>(InstructBLIP<br>-FlanT5-XL)</td>
|
218 |
+
<td>86.1<br>(PALI-X<br>-55B)</td>
|
219 |
+
<td>66.1<br>(PALI-X<br>-55B)</td>
|
220 |
+
<td>72.1<br>(CFR)</td>
|
221 |
+
<td>92.53<br>(LLaVa+<br>GPT-4)</td>
|
222 |
+
<td>70.9<br>(PALI-X<br>-55B)</td>
|
223 |
+
</tr>
|
224 |
+
</tbody>
|
225 |
+
</table>
|
226 |
+
|
227 |
+
- For zero-shot image captioning, Qwen-VL achieves the **SOTA** on Flickr30K and competitive results on Nocaps with InstructBlip.
|
228 |
+
- For general VQA, Qwen-VL achieves the **SOTA** under the same generalist LVLM scale settings.
|
229 |
+
|
230 |
+
### Text-based VQA (focuse on text understanding capabilities in images)
|
231 |
+
|
232 |
+
<table>
|
233 |
+
<thead>
|
234 |
+
<tr>
|
235 |
+
<th>Model type</th>
|
236 |
+
<th>Model</th>
|
237 |
+
<th>TextVQA</th>
|
238 |
+
<th>DocVQA</th>
|
239 |
+
<th>ChartQA</th>
|
240 |
+
<th>AI2D</th>
|
241 |
+
<th>OCR-VQA</th>
|
242 |
+
</tr>
|
243 |
+
</thead>
|
244 |
+
<tbody align="center">
|
245 |
+
<tr>
|
246 |
+
<td rowspan="5">Generalist Models</td>
|
247 |
+
<td>BLIP-2 (Vicuna-13B)</td>
|
248 |
+
<td>42.4</td>
|
249 |
+
<td>-</td>
|
250 |
+
<td>-</td>
|
251 |
+
<td>-</td>
|
252 |
+
<td>-</td>
|
253 |
+
</tr>
|
254 |
+
<tr>
|
255 |
+
<td>InstructBLIP (Vicuna-13B)</td>
|
256 |
+
<td>50.7</td>
|
257 |
+
<td>-</td>
|
258 |
+
<td>-</td>
|
259 |
+
<td>-</td>
|
260 |
+
<td>-</td>
|
261 |
+
</tr>
|
262 |
+
<tr>
|
263 |
+
<td>mPLUG-DocOwl (LLaMA-7B)</td>
|
264 |
+
<td>52.6</td>
|
265 |
+
<td>62.2</td>
|
266 |
+
<td>57.4</td>
|
267 |
+
<td>-</td>
|
268 |
+
<td>-</td>
|
269 |
+
</tr>
|
270 |
+
<tr>
|
271 |
+
<td>Pic2Struct-Large (1.3B)</td>
|
272 |
+
<td>-</td>
|
273 |
+
<td><b>76.6</b></td>
|
274 |
+
<td>58.6</td>
|
275 |
+
<td>42.1</td>
|
276 |
+
<td>71.3</td>
|
277 |
+
</tr>
|
278 |
+
<tr>
|
279 |
+
<td>Qwen-VL (Qwen-7B)</td>
|
280 |
+
<td><b>63.8</b></td>
|
281 |
+
<td>65.1</td>
|
282 |
+
<td><b>65.7</b></td>
|
283 |
+
<td><b>62.3</b></td>
|
284 |
+
<td><b>75.7</b></td>
|
285 |
+
</tr>
|
286 |
+
<tr>
|
287 |
+
<td>Specialist SOTAs<br>(Specialist/Finetuned)</td>
|
288 |
+
<td>PALI-X-55B (Single-task FT)<br>(Without OCR Pipeline)</td>
|
289 |
+
<td>71.44</td>
|
290 |
+
<td>80.0</td>
|
291 |
+
<td>70.0</td>
|
292 |
+
<td>81.2</td>
|
293 |
+
<td>75.0</td>
|
294 |
+
</tr>
|
295 |
+
</tbody>
|
296 |
+
</table>
|
297 |
+
|
298 |
+
- In text-related recognition/QA evaluation, Qwen-VL achieves the SOTA under the generalist LVLM scale settings.
|
299 |
+
- Resolution is important for several above evaluations. While most open-source LVLM models with 224 resolution are incapable of these evaluations or can only solve these by cutting images, Qwen-VL scales the resolution to 448 so that it can be evaluated end-to-end. Qwen-VL even outperforms Pic2Struct-Large models of 1024 resolution on some tasks.
|
300 |
+
|
301 |
+
### Referring Expression Comprehension
|
302 |
+
<table>
|
303 |
+
<thead>
|
304 |
+
<tr>
|
305 |
+
<th rowspan="2">Model type</th>
|
306 |
+
<th rowspan="2">Model</th>
|
307 |
+
<th colspan="3">RefCOCO</th>
|
308 |
+
<th colspan="3">RefCOCO+</th>
|
309 |
+
<th colspan="2">RefCOCOg</th>
|
310 |
+
<th>GRIT</th>
|
311 |
+
</tr>
|
312 |
+
<tr>
|
313 |
+
<th>val</th>
|
314 |
+
<th>test-A</th>
|
315 |
+
<th>test-B</th>
|
316 |
+
<th>val</th>
|
317 |
+
<th>test-A</th>
|
318 |
+
<th>test-B</th>
|
319 |
+
<th>val-u</th>
|
320 |
+
<th>test-u</th>
|
321 |
+
<th>refexp</th>
|
322 |
+
</tr>
|
323 |
+
</thead>
|
324 |
+
<tbody align="center">
|
325 |
+
<tr>
|
326 |
+
<td rowspan="8">Generalist Models</td>
|
327 |
+
<td>GPV-2</td>
|
328 |
+
<td>-</td>
|
329 |
+
<td>-</td>
|
330 |
+
<td>-</td>
|
331 |
+
<td>-</td>
|
332 |
+
<td>-</td>
|
333 |
+
<td>-</td>
|
334 |
+
<td>-</td>
|
335 |
+
<td>-</td>
|
336 |
+
<td>51.50</td>
|
337 |
+
</tr>
|
338 |
+
<tr>
|
339 |
+
<td>OFA-L*</td>
|
340 |
+
<td>79.96</td>
|
341 |
+
<td>83.67</td>
|
342 |
+
<td>76.39</td>
|
343 |
+
<td>68.29</td>
|
344 |
+
<td>76.00</td>
|
345 |
+
<td>61.75</td>
|
346 |
+
<td>67.57</td>
|
347 |
+
<td>67.58</td>
|
348 |
+
<td>61.70</td>
|
349 |
+
</tr>
|
350 |
+
<tr>
|
351 |
+
<td>Unified-IO</td>
|
352 |
+
<td>-</td>
|
353 |
+
<td>-</td>
|
354 |
+
<td>-</td>
|
355 |
+
<td>-</td>
|
356 |
+
<td>-</td>
|
357 |
+
<td>-</td>
|
358 |
+
<td>-</td>
|
359 |
+
<td>-</td>
|
360 |
+
<td><b>78.61</b></td>
|
361 |
+
</tr>
|
362 |
+
<tr>
|
363 |
+
<td>VisionLLM-H</td>
|
364 |
+
<td></td>
|
365 |
+
<td>86.70</td>
|
366 |
+
<td>-</td>
|
367 |
+
<td>-</td>
|
368 |
+
<td>-</td>
|
369 |
+
<td>-</td>
|
370 |
+
<td>-</td>
|
371 |
+
<td>-</td>
|
372 |
+
<td>-</td>
|
373 |
+
</tr>
|
374 |
+
<tr>
|
375 |
+
<td>Shikra-7B</td>
|
376 |
+
<td>87.01</td>
|
377 |
+
<td>90.61</td>
|
378 |
+
<td>80.24 </td>
|
379 |
+
<td>81.60</td>
|
380 |
+
<td>87.36</td>
|
381 |
+
<td>72.12</td>
|
382 |
+
<td>82.27</td>
|
383 |
+
<td>82.19</td>
|
384 |
+
<td>69.34</td>
|
385 |
+
</tr>
|
386 |
+
<tr>
|
387 |
+
<td>Shikra-13B</td>
|
388 |
+
<td>87.83 </td>
|
389 |
+
<td>91.11</td>
|
390 |
+
<td>81.81</td>
|
391 |
+
<td>82.89</td>
|
392 |
+
<td>87.79</td>
|
393 |
+
<td>74.41</td>
|
394 |
+
<td>82.64</td>
|
395 |
+
<td>83.16</td>
|
396 |
+
<td>69.03</td>
|
397 |
+
</tr>
|
398 |
+
<tr>
|
399 |
+
<td>Qwen-VL-7B</td>
|
400 |
+
<td><b>89.36</b></td>
|
401 |
+
<td>92.26</td>
|
402 |
+
<td><b>85.34</b></td>
|
403 |
+
<td><b>83.12</b></td>
|
404 |
+
<td>88.25</td>
|
405 |
+
<td><b>77.21</b></td>
|
406 |
+
<td><b>85.58</b></td>
|
407 |
+
<td><b>85.48</b></td>
|
408 |
+
<td>78.22</td>
|
409 |
+
</tr>
|
410 |
+
<tr>
|
411 |
+
<td>Qwen-VL-7B-Chat</td>
|
412 |
+
<td><b>88.55</b></td>
|
413 |
+
<td><b>92.27</b></td>
|
414 |
+
<td>84.51</td>
|
415 |
+
<td>82.82</td>
|
416 |
+
<td><b>88.59</b></td>
|
417 |
+
<td>-</td>
|
418 |
+
<td>-</td>
|
419 |
+
<td>-</td>
|
420 |
+
<td>-</td>
|
421 |
+
</tr>
|
422 |
+
<tr>
|
423 |
+
<td rowspan="3">Specialist SOTAs<br>(Specialist/Finetuned)</td>
|
424 |
+
<td>G-DINO-L</td>
|
425 |
+
<td>90.56 </td>
|
426 |
+
<td>93.19</td>
|
427 |
+
<td>88.24</td>
|
428 |
+
<td>82.75</td>
|
429 |
+
<td>88.95</td>
|
430 |
+
<td>75.92</td>
|
431 |
+
<td>86.13</td>
|
432 |
+
<td>87.02</td>
|
433 |
+
<td>-</td>
|
434 |
+
</tr>
|
435 |
+
<tr>
|
436 |
+
<td>UNINEXT-H</td>
|
437 |
+
<td>92.64 </td>
|
438 |
+
<td>94.33</td>
|
439 |
+
<td>91.46</td>
|
440 |
+
<td>85.24</td>
|
441 |
+
<td>89.63</td>
|
442 |
+
<td>79.79</td>
|
443 |
+
<td>88.73</td>
|
444 |
+
<td>89.37</td>
|
445 |
+
<td>-</td>
|
446 |
+
</tr>
|
447 |
+
<tr>
|
448 |
+
<td>ONE-PEACE</td>
|
449 |
+
<td>92.58 </td>
|
450 |
+
<td>94.18</td>
|
451 |
+
<td>89.26</td>
|
452 |
+
<td>88.77</td>
|
453 |
+
<td>92.21</td>
|
454 |
+
<td>83.23</td>
|
455 |
+
<td>89.22</td>
|
456 |
+
<td>89.27</td>
|
457 |
+
<td>-</td>
|
458 |
+
</tr>
|
459 |
+
</tbody>
|
460 |
+
</table>
|
461 |
+
|
462 |
+
- Qwen-VL achieves the **SOTA** in all above referring expression comprehension benchmarks.
|
463 |
+
- Qwen-VL has not been trained on any Chinese grounding data, but it can still generalize to the Chinese Grounding tasks in a zero-shot way by training Chinese Caption data and English Grounding data.
|
464 |
+
|
465 |
+
We provide all of the above evaluation scripts for reproducing our experimental results. Please read [eval/EVALUATION.md](eval/EVALUATION.md) for more information.
|
466 |
+
|
467 |
+
### Chat evaluation
|
468 |
+
|
469 |
+
TouchStone is a benchmark based on scoring with GPT4 to evaluate the abilities of the LVLM model on text-image dialogue and alignment levels with humans. It covers a total of 300+ images, 800+ questions, and 27 categories, such as attribute-based Q&A, celebrity recognition, writing poetry, summarizing multiple images, product comparison, math problem solving, etc. Please read [touchstone/README_CN.md](touchstone/README.md) for more information.
|
470 |
+
|
471 |
+
#### English evaluation
|
472 |
+
|
473 |
+
| Model | Score |
|
474 |
+
|---------------|-------|
|
475 |
+
| PandaGPT | 488.5 |
|
476 |
+
| MiniGPT4 | 531.7 |
|
477 |
+
| InstructBLIP | 552.4 |
|
478 |
+
| LLaMA-AdapterV2 | 590.1 |
|
479 |
+
| mPLUG-Owl | 605.4 |
|
480 |
+
| LLaVA | 602.7 |
|
481 |
+
| Qwen-VL-Chat | 645.2 |
|
482 |
+
|
483 |
+
#### Chinese evaluation
|
484 |
+
|
485 |
+
| Model | Score |
|
486 |
+
|---------------|-------|
|
487 |
+
| VisualGLM | 247.1 |
|
488 |
+
| Qwen-VL-Chat | 401.2 |
|
489 |
+
|
490 |
+
Qwen-VL-Chat has achieved the best results in both Chinese and English alignment evaluation.
|
491 |
+
|
492 |
+
## Requirements
|
493 |
+
|
494 |
+
* python 3.8 and above
|
495 |
+
* pytorch 1.12 and above, 2.0 and above are recommended
|
496 |
+
* CUDA 11.4 and above are recommended (this is for GPU users)
|
497 |
+
|
498 |
+
## Quickstart
|
499 |
+
|
500 |
+
Below, we provide simple examples to show how to use Qwen-VL and Qwen-VL-Chat with 🤖 ModelScope and 🤗 Transformers.
|
501 |
+
|
502 |
+
Before running the code, make sure you have setup the environment and installed the required packages. Make sure you meet the above requirements, and then install the dependent libraries.
|
503 |
+
|
504 |
+
```bash
|
505 |
+
pip install -r requirements.txt
|
506 |
+
```
|
507 |
+
|
508 |
+
Now you can start with ModelScope or Transformers. More usage aboue vision encoder, please refer to [FAQ](FAQ.md).
|
509 |
+
|
510 |
+
#### 🤗 Transformers
|
511 |
+
|
512 |
+
To use Qwen-VL for the inference, all you need to do is to input a few lines of codes as demonstrated below. However, **please make sure that you are using the latest code.**
|
513 |
+
|
514 |
+
```python
|
515 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
516 |
+
from transformers.generation import GenerationConfig
|
517 |
+
import torch
|
518 |
+
torch.manual_seed(1234)
|
519 |
+
|
520 |
+
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen-VL", trust_remote_code=True)
|
521 |
+
|
522 |
+
# use bf16
|
523 |
+
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-VL", device_map="auto", trust_remote_code=True, bf16=True).eval()
|
524 |
+
# use fp16
|
525 |
+
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-VL", device_map="auto", trust_remote_code=True, fp16=True).eval()
|
526 |
+
# use cpu only
|
527 |
+
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-VL", device_map="cpu", trust_remote_code=True).eval()
|
528 |
+
# use cuda device
|
529 |
+
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-VL", device_map="cuda", trust_remote_code=True).eval()
|
530 |
+
|
531 |
+
# Specify hyperparameters for generation
|
532 |
+
model.generation_config = GenerationConfig.from_pretrained("Qwen/Qwen-VL", trust_remote_code=True)
|
533 |
+
|
534 |
+
query = tokenizer.from_list_format([
|
535 |
+
{'image': 'https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg'},
|
536 |
+
{'text': 'Generate the caption in English with grounding:'},
|
537 |
+
])
|
538 |
+
inputs = tokenizer(query, return_tensors='pt')
|
539 |
+
inputs = inputs.to(model.device)
|
540 |
+
pred = model.generate(**inputs)
|
541 |
+
response = tokenizer.decode(pred.cpu()[0], skip_special_tokens=False)
|
542 |
+
print(response)
|
543 |
+
# <img>https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg</img>Generate the caption in English with grounding:<ref> Woman</ref><box>(451,379),(731,806)</box> and<ref> her dog</ref><box>(219,424),(576,896)</box> playing on the beach<|endoftext|>
|
544 |
+
image = tokenizer.draw_bbox_on_latest_picture(response)
|
545 |
+
if image:
|
546 |
+
image.save('2.jpg')
|
547 |
+
else:
|
548 |
+
print("no box")
|
549 |
+
```
|
550 |
+
|
551 |
+
<p align="center">
|
552 |
+
<img src="https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo_spotting_caption.jpeg" width="500"/>
|
553 |
+
<p>
|
554 |
+
|
555 |
+
|
556 |
+
## FAQ
|
557 |
+
|
558 |
+
If you meet problems, please refer to [FAQ](FAQ.md) and the issues first to search a solution before you launch a new issue.
|
559 |
+
|
560 |
+
|
561 |
+
## License Agreement
|
562 |
+
|
563 |
+
Researchers and developers are free to use the codes and model weights of both Qwen-7B and Qwen-7B-Chat. We also allow their commercial use. Check our license at [LICENSE](LICENSE) for more details.
|
564 |
+
|
565 |
+
## Contact Us
|
566 |
+
|
567 |
+
If you are interested to leave a message to either our research team or product team, feel free to send an email to qianwen_opensource@alibabacloud.com.
|
568 |
+
|
tokenization_qwen.py
CHANGED
@@ -18,6 +18,7 @@ from PIL import Image
|
|
18 |
from PIL import ImageFont
|
19 |
from PIL import ImageDraw
|
20 |
from transformers import PreTrainedTokenizer, AddedToken
|
|
|
21 |
|
22 |
import matplotlib.pyplot as plt
|
23 |
import matplotlib.colors as mcolors
|
@@ -26,7 +27,7 @@ from matplotlib.font_manager import FontProperties
|
|
26 |
logger = logging.getLogger(__name__)
|
27 |
|
28 |
|
29 |
-
VOCAB_FILES_NAMES = {"vocab_file": "qwen.tiktoken"}
|
30 |
|
31 |
PAT_STR = r"""(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+"""
|
32 |
ENDOFTEXT = "<|endoftext|>"
|
@@ -410,20 +411,16 @@ class QWenTokenizer(PreTrainedTokenizer):
|
|
410 |
if image is None:
|
411 |
return None
|
412 |
if image.startswith("http://") or image.startswith("https://"):
|
413 |
-
image = Image.open(requests.get(image, stream=True).raw)
|
|
|
414 |
else:
|
415 |
-
# image = Image.open(image)
|
416 |
image = plt.imread(image)
|
417 |
-
|
418 |
-
# image = image.convert("RGB")
|
419 |
-
h, w = image.shape[0], image.shape[1]
|
420 |
visualizer = Visualizer(image)
|
421 |
|
422 |
boxes = self._fetch_all_box_with_ref(response)
|
423 |
if not boxes:
|
424 |
return None
|
425 |
-
# fnt = ImageFont.truetype("SimSun.ttf", 50)
|
426 |
-
# draw = ImageDraw.Draw(image)
|
427 |
color = random.choice([_ for _ in mcolors.TABLEAU_COLORS.keys()]) # init color
|
428 |
for box in boxes:
|
429 |
if 'ref' in box: # random new color for new refexps
|
@@ -496,6 +493,7 @@ class VisImage:
|
|
496 |
class Visualizer:
|
497 |
def __init__(self, img_rgb, metadata=None, scale=1.0):
|
498 |
self.img = np.asarray(img_rgb).clip(0, 255).astype(np.uint8)
|
|
|
499 |
self.output = VisImage(self.img, scale=scale)
|
500 |
self.cpu_device = torch.device("cpu")
|
501 |
|
@@ -527,7 +525,7 @@ class Visualizer:
|
|
527 |
y,
|
528 |
text,
|
529 |
size=font_size * self.output.scale,
|
530 |
-
fontproperties=FontProperties(fname=
|
531 |
bbox={"facecolor": "black", "alpha": 0.8, "pad": 0.7, "edgecolor": "none"},
|
532 |
verticalalignment="top",
|
533 |
horizontalalignment=horizontal_alignment,
|
|
|
18 |
from PIL import ImageFont
|
19 |
from PIL import ImageDraw
|
20 |
from transformers import PreTrainedTokenizer, AddedToken
|
21 |
+
from transformers.utils import try_to_load_from_cache
|
22 |
|
23 |
import matplotlib.pyplot as plt
|
24 |
import matplotlib.colors as mcolors
|
|
|
27 |
logger = logging.getLogger(__name__)
|
28 |
|
29 |
|
30 |
+
VOCAB_FILES_NAMES = {"vocab_file": "qwen.tiktoken", "ttf": "SimSun.ttf"}
|
31 |
|
32 |
PAT_STR = r"""(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+"""
|
33 |
ENDOFTEXT = "<|endoftext|>"
|
|
|
411 |
if image is None:
|
412 |
return None
|
413 |
if image.startswith("http://") or image.startswith("https://"):
|
414 |
+
image = Image.open(requests.get(image, stream=True).raw).convert("RGB")
|
415 |
+
h, w = image.height, image.width
|
416 |
else:
|
|
|
417 |
image = plt.imread(image)
|
418 |
+
h, w = image.shape[0], image.shape[1]
|
|
|
|
|
419 |
visualizer = Visualizer(image)
|
420 |
|
421 |
boxes = self._fetch_all_box_with_ref(response)
|
422 |
if not boxes:
|
423 |
return None
|
|
|
|
|
424 |
color = random.choice([_ for _ in mcolors.TABLEAU_COLORS.keys()]) # init color
|
425 |
for box in boxes:
|
426 |
if 'ref' in box: # random new color for new refexps
|
|
|
493 |
class Visualizer:
|
494 |
def __init__(self, img_rgb, metadata=None, scale=1.0):
|
495 |
self.img = np.asarray(img_rgb).clip(0, 255).astype(np.uint8)
|
496 |
+
self.font_path = try_to_load_from_cache("Qwen/Qwen-VL-Chat", "SimSun.ttf")
|
497 |
self.output = VisImage(self.img, scale=scale)
|
498 |
self.cpu_device = torch.device("cpu")
|
499 |
|
|
|
525 |
y,
|
526 |
text,
|
527 |
size=font_size * self.output.scale,
|
528 |
+
fontproperties=FontProperties(fname=self.font_path),
|
529 |
bbox={"facecolor": "black", "alpha": 0.8, "pad": 0.7, "edgecolor": "none"},
|
530 |
verticalalignment="top",
|
531 |
horizontalalignment=horizontal_alignment,
|