refactor tokenization and update readme
Browse files- README.md +1 -3
- qwen_generation_utils.py +2 -2
- tokenization_qwen.py +117 -156
- tokenizer_config.json +1 -2
README.md
CHANGED
@@ -73,9 +73,7 @@ You can easily call the model with the following code:
|
|
73 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
74 |
from transformers.generation import GenerationConfig
|
75 |
|
76 |
-
# Note:
|
77 |
-
# To remove the strategy, you can add `allowed_special`, which accepts the string "all" or a `set` of special tokens.
|
78 |
-
# For example: tokens = tokenizer(text, allowed_special="all")
|
79 |
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen-7B-Chat", trust_remote_code=True)
|
80 |
# We recommend checking the support of BF16 first. Run the command below:
|
81 |
# import torch
|
|
|
73 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
74 |
from transformers.generation import GenerationConfig
|
75 |
|
76 |
+
# Note: The default behavior now has injection attack prevention off.
|
|
|
|
|
77 |
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen-7B-Chat", trust_remote_code=True)
|
78 |
# We recommend checking the support of BF16 first. Run the command below:
|
79 |
# import torch
|
qwen_generation_utils.py
CHANGED
@@ -135,8 +135,8 @@ def make_context(
|
|
135 |
|
136 |
def _tokenize_str(role, content):
|
137 |
return f"{role}\n{content}", tokenizer.encode(
|
138 |
-
role
|
139 |
-
) + nl_tokens + tokenizer.encode(content)
|
140 |
|
141 |
system_text, system_tokens_part = _tokenize_str("system", system)
|
142 |
system_tokens = im_start_tokens + system_tokens_part + im_end_tokens
|
|
|
135 |
|
136 |
def _tokenize_str(role, content):
|
137 |
return f"{role}\n{content}", tokenizer.encode(
|
138 |
+
role, allowed_special=set()
|
139 |
+
) + nl_tokens + tokenizer.encode(content, allowed_special=set())
|
140 |
|
141 |
system_text, system_tokens_part = _tokenize_str("system", system)
|
142 |
system_tokens = im_start_tokens + system_tokens_part + im_end_tokens
|
tokenization_qwen.py
CHANGED
@@ -5,164 +5,120 @@
|
|
5 |
|
6 |
"""Tokenization classes for QWen."""
|
7 |
|
8 |
-
|
9 |
-
|
10 |
-
import json
|
11 |
import logging
|
12 |
import os
|
13 |
import unicodedata
|
14 |
-
from
|
15 |
-
import base64
|
16 |
-
import tiktoken
|
17 |
-
from typing import List, Optional, Tuple, Union
|
18 |
|
|
|
19 |
from transformers import PreTrainedTokenizer, AddedToken
|
20 |
|
21 |
logger = logging.getLogger(__name__)
|
22 |
|
|
|
23 |
VOCAB_FILES_NAMES = {"vocab_file": "qwen.tiktoken"}
|
24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
class QWenTokenizer(PreTrainedTokenizer):
|
26 |
"""QWen tokenizer."""
|
27 |
|
28 |
-
"""NOTE: This tokenizer will not handle special tokens to avoid injection attacks"""
|
29 |
-
|
30 |
vocab_files_names = VOCAB_FILES_NAMES
|
31 |
|
32 |
def __init__(
|
33 |
self,
|
34 |
vocab_file,
|
35 |
errors="replace",
|
36 |
-
max_len=None,
|
37 |
-
unk_token="<|endoftext|>",
|
38 |
-
bos_token="<|endoftext|>",
|
39 |
-
eos_token="<|endoftext|>",
|
40 |
-
pad_token=None,
|
41 |
-
add_prefix_space=False,
|
42 |
-
add_bos_token=False,
|
43 |
-
add_more_sp_tokens=True,
|
44 |
**kwargs,
|
45 |
):
|
46 |
-
|
47 |
-
AddedToken(bos_token, lstrip=False, rstrip=False)
|
48 |
-
if isinstance(bos_token, str)
|
49 |
-
else bos_token
|
50 |
-
)
|
51 |
-
eos_token = (
|
52 |
-
AddedToken(eos_token, lstrip=False, rstrip=False)
|
53 |
-
if isinstance(eos_token, str)
|
54 |
-
else eos_token
|
55 |
-
)
|
56 |
-
unk_token = (
|
57 |
-
AddedToken(unk_token, lstrip=False, rstrip=False)
|
58 |
-
if isinstance(unk_token, str)
|
59 |
-
else unk_token
|
60 |
-
)
|
61 |
-
pad_token = (
|
62 |
-
AddedToken(pad_token, lstrip=False, rstrip=False)
|
63 |
-
if isinstance(pad_token, str)
|
64 |
-
else pad_token
|
65 |
-
)
|
66 |
-
super().__init__(
|
67 |
-
errors=errors,
|
68 |
-
unk_token=unk_token,
|
69 |
-
bos_token=bos_token,
|
70 |
-
eos_token=eos_token,
|
71 |
-
pad_token=pad_token,
|
72 |
-
add_prefix_space=add_prefix_space,
|
73 |
-
add_bos_token=add_bos_token,
|
74 |
-
)
|
75 |
-
self.add_bos_token = add_bos_token
|
76 |
-
self.max_len = max_len if max_len is not None else int(1e12)
|
77 |
|
78 |
self.errors = errors # how to handle errors in decoding
|
79 |
|
80 |
-
|
81 |
-
|
82 |
-
IMSTART = "<|im_start|>"
|
83 |
-
IMEND = "<|im_end|>"
|
84 |
-
if add_more_sp_tokens:
|
85 |
-
special_tokens = (
|
86 |
-
ENDOFTEXT,
|
87 |
-
IMSTART,
|
88 |
-
IMEND,
|
89 |
-
"<R>",
|
90 |
-
"<S>",
|
91 |
-
"<X>",
|
92 |
-
"<mask>",
|
93 |
-
"<sep>",
|
94 |
-
) + tuple([f"<extra_{i}>" for i in range(200)])
|
95 |
-
else:
|
96 |
-
special_tokens = (ENDOFTEXT, IMSTART, IMEND)
|
97 |
-
|
98 |
-
PAT_STR = r"""(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+"""
|
99 |
-
|
100 |
-
def load_tiktoken_bpe(tiktoken_bpe_file: str) -> "dict[bytes, int]":
|
101 |
-
contents = open(tiktoken_bpe_file, "rb").read()
|
102 |
-
return {
|
103 |
-
base64.b64decode(token): int(rank)
|
104 |
-
for token, rank in (
|
105 |
-
line.split() for line in contents.splitlines() if line
|
106 |
-
)
|
107 |
-
}
|
108 |
-
|
109 |
-
mergeable_ranks = load_tiktoken_bpe(vocab_file)
|
110 |
-
special_tokens = {
|
111 |
token: index
|
112 |
-
for index, token in enumerate(
|
|
|
|
|
113 |
}
|
114 |
-
|
115 |
enc = tiktoken.Encoding(
|
116 |
-
|
117 |
pat_str=PAT_STR,
|
118 |
-
mergeable_ranks=mergeable_ranks,
|
119 |
-
special_tokens=special_tokens,
|
120 |
)
|
121 |
assert (
|
122 |
-
len(mergeable_ranks) + len(special_tokens) == enc.n_vocab
|
123 |
-
), f"{len(mergeable_ranks) + len(special_tokens)} != {enc.n_vocab} in encoding"
|
124 |
|
125 |
-
self.
|
126 |
-
|
127 |
-
|
128 |
self.decoder.update({v: k for k, v in self.special_tokens.items()})
|
|
|
129 |
self.tokenizer = enc # type: tiktoken.Encoding
|
|
|
130 |
self.eod_id = self.tokenizer.eot_token
|
131 |
-
self.im_start_id = special_tokens[IMSTART]
|
132 |
-
self.im_end_id = special_tokens[IMEND]
|
133 |
|
134 |
-
def __len__(self):
|
135 |
return self.tokenizer.n_vocab
|
136 |
|
137 |
-
def get_vocab(self):
|
138 |
return self.mergeable_ranks
|
139 |
|
140 |
-
def convert_tokens_to_ids(
|
|
|
|
|
141 |
ids = []
|
142 |
-
|
143 |
-
if isinstance(tokens, str):
|
144 |
if tokens in self.special_tokens:
|
145 |
return self.special_tokens[tokens]
|
146 |
else:
|
147 |
-
return self.
|
148 |
for token in tokens:
|
149 |
if token in self.special_tokens:
|
150 |
ids.append(self.special_tokens[token])
|
151 |
else:
|
152 |
-
ids.append(self.
|
153 |
-
if len(ids) > self.max_len:
|
154 |
-
logger.warning(
|
155 |
-
"Token indices sequence length is longer than the specified maximum "
|
156 |
-
" sequence length for this model ({} > {}). Running this"
|
157 |
-
" sequence through the model will result in indexing errors".format(
|
158 |
-
len(ids), self.max_len
|
159 |
-
)
|
160 |
-
)
|
161 |
return ids
|
162 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
163 |
def save_vocabulary(self, save_directory: str, **kwargs) -> Tuple[str]:
|
164 |
"""
|
165 |
-
Save only the vocabulary of the tokenizer (vocabulary
|
166 |
|
167 |
Returns:
|
168 |
`Tuple(str)`: Paths to the files saved.
|
@@ -174,76 +130,81 @@ class QWenTokenizer(PreTrainedTokenizer):
|
|
174 |
w.write(line)
|
175 |
return (file_path,)
|
176 |
|
177 |
-
def tokenize(
|
|
|
|
|
|
|
|
|
|
|
|
|
178 |
"""
|
179 |
-
Converts a string in a sequence of tokens
|
180 |
|
181 |
Args:
|
182 |
text (`str`):
|
183 |
The sequence to be encoded.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
184 |
kwargs (additional keyword arguments, *optional*):
|
185 |
Will be passed to the underlying model specific encode method.
|
186 |
-
Tiktoken allows users to allow the tokenization of special tokens with the following args:
|
187 |
-
`allowed_special`: set to 'all' or a `set` of special tokens.
|
188 |
-
`disallowed_special`: set to 'all' or a `Collection` of special tokens. NOT RECOMMENDED, AS IT MAY BE CONFLICTED WITH `allowed_special`.
|
189 |
|
190 |
Returns:
|
191 |
-
`List[str]`: The list of tokens.
|
192 |
"""
|
193 |
tokens = []
|
194 |
text = unicodedata.normalize("NFC", text)
|
195 |
|
196 |
-
|
|
|
|
|
|
|
197 |
tokens.append(self.decoder[t])
|
198 |
-
|
199 |
return tokens
|
200 |
|
201 |
-
def convert_tokens_to_string(self, tokens: List[str]) -> str:
|
202 |
"""
|
203 |
-
Converts a sequence of tokens in a single string.
|
204 |
-
often want to remove sub-word tokenization artifacts at the same time.
|
205 |
"""
|
206 |
-
text = ""
|
207 |
-
|
208 |
-
|
209 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
210 |
return text
|
211 |
-
|
212 |
@property
|
213 |
def vocab_size(self):
|
214 |
return self.tokenizer.n_vocab
|
215 |
|
216 |
-
def _convert_id_to_token(self, index: int) -> str:
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
self.
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
`List[str]`: All the special tokens (`'<unk>'`, `'<cls>'`, etc.) mapped to class attributes.
|
232 |
-
|
233 |
-
Convert tokens of `tokenizers.AddedToken` type to string.
|
234 |
-
"""
|
235 |
-
all_toks = [str(s) for s in self.special_tokens.keys()]
|
236 |
-
return all_toks
|
237 |
-
|
238 |
-
@property
|
239 |
-
def all_special_ids(self) -> List[int]:
|
240 |
-
"""
|
241 |
-
`List[int]`: List the ids of the special tokens(`'<unk>'`, `'<cls>'`, etc.) mapped to class attributes.
|
242 |
-
"""
|
243 |
-
all_ids = [v for v in self.special_tokens.values()]
|
244 |
-
return all_ids
|
245 |
-
|
246 |
-
def _tokenize(self, text, **kwargs):
|
247 |
"""
|
248 |
Converts a string in a sequence of tokens (string), using the tokenizer. Split in words for word-based
|
249 |
vocabulary or sub-words for sub-word-based vocabularies (BPE/SentencePieces/WordPieces).
|
@@ -261,5 +222,5 @@ class QWenTokenizer(PreTrainedTokenizer):
|
|
261 |
if isinstance(token_ids, int):
|
262 |
token_ids = [token_ids]
|
263 |
if skip_special_tokens:
|
264 |
-
token_ids = [i for i in token_ids if i
|
265 |
-
return self.tokenizer.decode(token_ids)
|
|
|
5 |
|
6 |
"""Tokenization classes for QWen."""
|
7 |
|
8 |
+
import base64
|
|
|
|
|
9 |
import logging
|
10 |
import os
|
11 |
import unicodedata
|
12 |
+
from typing import Collection, Dict, List, Set, Tuple, Union
|
|
|
|
|
|
|
13 |
|
14 |
+
import tiktoken
|
15 |
from transformers import PreTrainedTokenizer, AddedToken
|
16 |
|
17 |
logger = logging.getLogger(__name__)
|
18 |
|
19 |
+
|
20 |
VOCAB_FILES_NAMES = {"vocab_file": "qwen.tiktoken"}
|
21 |
|
22 |
+
PAT_STR = r"""(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+"""
|
23 |
+
ENDOFTEXT = "<|endoftext|>"
|
24 |
+
IMSTART = "<|im_start|>"
|
25 |
+
IMEND = "<|im_end|>"
|
26 |
+
# as the default behavior is changed to allow special tokens in
|
27 |
+
# regular texts, the surface forms of special tokens need to be
|
28 |
+
# as different as possible to minimize the impact
|
29 |
+
EXTRAS = tuple((f"<|extra_{i}|>" for i in range(205)))
|
30 |
+
SPECIAL_TOKENS = (
|
31 |
+
ENDOFTEXT,
|
32 |
+
IMSTART,
|
33 |
+
IMEND,
|
34 |
+
) + EXTRAS
|
35 |
+
|
36 |
+
|
37 |
+
def _load_tiktoken_bpe(tiktoken_bpe_file: str) -> Dict[bytes, int]:
|
38 |
+
contents = open(tiktoken_bpe_file, "rb").read()
|
39 |
+
return {
|
40 |
+
base64.b64decode(token): int(rank)
|
41 |
+
for token, rank in (line.split() for line in contents.splitlines() if line)
|
42 |
+
}
|
43 |
+
|
44 |
class QWenTokenizer(PreTrainedTokenizer):
|
45 |
"""QWen tokenizer."""
|
46 |
|
|
|
|
|
47 |
vocab_files_names = VOCAB_FILES_NAMES
|
48 |
|
49 |
def __init__(
|
50 |
self,
|
51 |
vocab_file,
|
52 |
errors="replace",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
**kwargs,
|
54 |
):
|
55 |
+
super().__init__(**kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
self.errors = errors # how to handle errors in decoding
|
58 |
|
59 |
+
self.mergeable_ranks = _load_tiktoken_bpe(vocab_file) # type: dict[bytes, int]
|
60 |
+
self.special_tokens = {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
token: index
|
62 |
+
for index, token in enumerate(
|
63 |
+
SPECIAL_TOKENS, start=len(self.mergeable_ranks)
|
64 |
+
)
|
65 |
}
|
66 |
+
|
67 |
enc = tiktoken.Encoding(
|
68 |
+
"Qwen",
|
69 |
pat_str=PAT_STR,
|
70 |
+
mergeable_ranks=self.mergeable_ranks,
|
71 |
+
special_tokens=self.special_tokens,
|
72 |
)
|
73 |
assert (
|
74 |
+
len(self.mergeable_ranks) + len(self.special_tokens) == enc.n_vocab
|
75 |
+
), f"{len(self.mergeable_ranks) + len(self.special_tokens)} != {enc.n_vocab} in encoding"
|
76 |
|
77 |
+
self.decoder = {
|
78 |
+
v: k for k, v in self.mergeable_ranks.items()
|
79 |
+
} # type: dict[int, bytes|str]
|
80 |
self.decoder.update({v: k for k, v in self.special_tokens.items()})
|
81 |
+
|
82 |
self.tokenizer = enc # type: tiktoken.Encoding
|
83 |
+
|
84 |
self.eod_id = self.tokenizer.eot_token
|
85 |
+
self.im_start_id = self.special_tokens[IMSTART]
|
86 |
+
self.im_end_id = self.special_tokens[IMEND]
|
87 |
|
88 |
+
def __len__(self) -> int:
|
89 |
return self.tokenizer.n_vocab
|
90 |
|
91 |
+
def get_vocab(self) -> Dict[bytes, int]:
|
92 |
return self.mergeable_ranks
|
93 |
|
94 |
+
def convert_tokens_to_ids(
|
95 |
+
self, tokens: Union[bytes, str, List[Union[bytes, str]]]
|
96 |
+
) -> List[int]:
|
97 |
ids = []
|
98 |
+
if isinstance(tokens, (str, bytes)):
|
|
|
99 |
if tokens in self.special_tokens:
|
100 |
return self.special_tokens[tokens]
|
101 |
else:
|
102 |
+
return self.mergeable_ranks.get(tokens)
|
103 |
for token in tokens:
|
104 |
if token in self.special_tokens:
|
105 |
ids.append(self.special_tokens[token])
|
106 |
else:
|
107 |
+
ids.append(self.mergeable_ranks.get(token))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
return ids
|
109 |
|
110 |
+
def _add_tokens(self, new_tokens: Union[List[str], List[AddedToken]], special_tokens: bool = False) -> int:
|
111 |
+
if not special_tokens and new_tokens:
|
112 |
+
raise ValueError('Adding regular tokens is not supported')
|
113 |
+
for token in new_tokens:
|
114 |
+
surface_form = token.content if isinstance(token, AddedToken) else token
|
115 |
+
if surface_form not in SPECIAL_TOKENS:
|
116 |
+
raise ValueError('Adding unknown special tokens is not supported')
|
117 |
+
return 0
|
118 |
+
|
119 |
def save_vocabulary(self, save_directory: str, **kwargs) -> Tuple[str]:
|
120 |
"""
|
121 |
+
Save only the vocabulary of the tokenizer (vocabulary).
|
122 |
|
123 |
Returns:
|
124 |
`Tuple(str)`: Paths to the files saved.
|
|
|
130 |
w.write(line)
|
131 |
return (file_path,)
|
132 |
|
133 |
+
def tokenize(
|
134 |
+
self,
|
135 |
+
text: str,
|
136 |
+
allowed_special: Union[Set, str] = "all",
|
137 |
+
disallowed_special: Union[Collection, str] = (),
|
138 |
+
**kwargs,
|
139 |
+
) -> List[Union[bytes, str]]:
|
140 |
"""
|
141 |
+
Converts a string in a sequence of tokens.
|
142 |
|
143 |
Args:
|
144 |
text (`str`):
|
145 |
The sequence to be encoded.
|
146 |
+
allowed_special (`Literal["all"]` or `set`):
|
147 |
+
The surface forms of the tokens to be encoded as special tokens in regular texts.
|
148 |
+
Default to "all".
|
149 |
+
disallowed_special (`Literal["all"]` or `Collection`):
|
150 |
+
The surface forms of the tokens that should not be in regular texts and trigger errors.
|
151 |
+
Default to an empty tuple.
|
152 |
+
|
153 |
kwargs (additional keyword arguments, *optional*):
|
154 |
Will be passed to the underlying model specific encode method.
|
|
|
|
|
|
|
155 |
|
156 |
Returns:
|
157 |
+
`List[bytes|str]`: The list of tokens.
|
158 |
"""
|
159 |
tokens = []
|
160 |
text = unicodedata.normalize("NFC", text)
|
161 |
|
162 |
+
# this implementation takes a detour: text -> token id -> token surface forms
|
163 |
+
for t in self.tokenizer.encode(
|
164 |
+
text, allowed_special=allowed_special, disallowed_special=disallowed_special
|
165 |
+
):
|
166 |
tokens.append(self.decoder[t])
|
|
|
167 |
return tokens
|
168 |
|
169 |
+
def convert_tokens_to_string(self, tokens: List[Union[bytes, str]]) -> str:
|
170 |
"""
|
171 |
+
Converts a sequence of tokens in a single string.
|
|
|
172 |
"""
|
173 |
+
text = ""
|
174 |
+
temp = b""
|
175 |
+
for t in tokens:
|
176 |
+
if isinstance(t, str):
|
177 |
+
if temp:
|
178 |
+
text += temp.decode("utf-8", errors=self.errors)
|
179 |
+
temp = b""
|
180 |
+
text += t
|
181 |
+
elif isinstance(t, bytes):
|
182 |
+
temp += t
|
183 |
+
else:
|
184 |
+
raise TypeError("token should only be of type types or str")
|
185 |
+
if temp:
|
186 |
+
text += temp.decode("utf-8", errors=self.errors)
|
187 |
return text
|
188 |
+
|
189 |
@property
|
190 |
def vocab_size(self):
|
191 |
return self.tokenizer.n_vocab
|
192 |
|
193 |
+
def _convert_id_to_token(self, index: int) -> Union[bytes, str]:
|
194 |
+
"""Converts an id to a token, special tokens included"""
|
195 |
+
if index in self.decoder:
|
196 |
+
return self.decoder[index]
|
197 |
+
raise ValueError("unknown ids")
|
198 |
+
|
199 |
+
def _convert_token_to_id(self, token: Union[bytes, str]) -> int:
|
200 |
+
"""Converts a token to an id using the vocab, special tokens included"""
|
201 |
+
if token in self.special_tokens:
|
202 |
+
return self.special_tokens[token]
|
203 |
+
if token in self.mergeable_ranks:
|
204 |
+
return self.mergeable_ranks[token]
|
205 |
+
raise ValueError("unknown token")
|
206 |
+
|
207 |
+
def _tokenize(self, text: str, **kwargs):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
208 |
"""
|
209 |
Converts a string in a sequence of tokens (string), using the tokenizer. Split in words for word-based
|
210 |
vocabulary or sub-words for sub-word-based vocabularies (BPE/SentencePieces/WordPieces).
|
|
|
222 |
if isinstance(token_ids, int):
|
223 |
token_ids = [token_ids]
|
224 |
if skip_special_tokens:
|
225 |
+
token_ids = [i for i in token_ids if i < self.eod_id]
|
226 |
+
return self.tokenizer.decode(token_ids, errors=self.errors)
|
tokenizer_config.json
CHANGED
@@ -1,6 +1,5 @@
|
|
1 |
{
|
2 |
-
"
|
3 |
-
"do_lower_case": false,
|
4 |
"tokenizer_class": "QWenTokenizer",
|
5 |
"auto_map": {
|
6 |
"AutoTokenizer": [
|
|
|
1 |
{
|
2 |
+
"model_max_length": 8192,
|
|
|
3 |
"tokenizer_class": "QWenTokenizer",
|
4 |
"auto_map": {
|
5 |
"AutoTokenizer": [
|