upload resource files
Browse files- LICENSE +54 -0
- NOTICE +27 -0
- README.md +48 -48
- assets/logo.jpg +0 -0
- assets/qwen_tokenizer.png +0 -0
- config.json +45 -0
- configuration_qwen.py +74 -0
- generation_config.json +16 -0
- modeling_qwen.py +1027 -0
- pytorch_model.bin +1 -1
- qwen.tiktoken +0 -0
- qwen_generation_utils.py +411 -0
- tokenization_qwen.py +243 -0
- tokenizer_config.json +11 -0
LICENSE
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Tongyi Qianwen LICENSE AGREEMENT
|
2 |
+
|
3 |
+
Tongyi Qianwen Release Date: August 3, 2023
|
4 |
+
|
5 |
+
By clicking to agree or by using or distributing any portion or element of the Tongyi Qianwen Materials, you will be deemed to have recognized and accepted the content of this Agreement, which is effective immediately.
|
6 |
+
|
7 |
+
1. Definitions
|
8 |
+
a. This Tongyi Qianwen LICENSE AGREEMENT (this "Agreement") shall mean the terms and conditions for use, reproduction, distribution and modification of the Materials as defined by this Agreement.
|
9 |
+
b. "We"(or "Us") shall mean Alibaba Cloud.
|
10 |
+
c. "You" (or "Your") shall mean a natural person or legal entity exercising the rights granted by this Agreement and/or using the Materials for any purpose and in any field of use.
|
11 |
+
d. "Third Parties" shall mean individuals or legal entities that are not under common control with Us or You.
|
12 |
+
e. "Tongyi Qianwen" shall mean the large language models (including Qwen-7b model and Qwen-7b-Chat model ), and software and
|
13 |
+
algorithms, consisting of trained model weights, parameters (including optimizer states), machine-learning model code, inference-enabling code, training-enabling code, fine-tuning enabling code and other elements of the foregoing distributed by Us.
|
14 |
+
f. "Materials" shall mean, collectively, Alibaba Cloud's proprietary Tongyi Qianwen and Documentation (and any portion thereof) made available under this Agreement.
|
15 |
+
g. "Source" form shall mean the preferred form for making modifications, including but not limited to model source code, documentation source, and configuration files.
|
16 |
+
h. "Object" form shall mean any form resulting from mechanical transformation or translation of a Source form, including but not limited to compiled object code, generated documentation,
|
17 |
+
and conversions to other media types.
|
18 |
+
|
19 |
+
2. Grant of Rights
|
20 |
+
You are granted a non-exclusive, worldwide, non-transferable and royalty-free limited license under Alibaba Cloud's intellectual property or other rights owned by Us embodied in the Materials to use, reproduce, distribute, copy, create derivative works of, and make modifications to the Materials.
|
21 |
+
|
22 |
+
3. Redistribution
|
23 |
+
You may reproduce and distribute copies of the Materials or derivative works thereof in any medium, with or without modifications, and in Source or Object form, provided that You meet the following conditions:
|
24 |
+
a. You shall give any other recipients of the Materials or derivative works a copy of this Agreement;
|
25 |
+
b. You shall cause any modified files to carry prominent notices stating that You changed the files;
|
26 |
+
c. You shall retain in all copies of the Materials that You distribute the following attribution notices within a "Notice" text file distributed as a part of such copies:"Tongyi Qianwen is licensed under the Tongyi Qianwen LICENSE AGREEMENT, Copyright (c) Alibaba Cloud. All Rights Reserved."; and
|
27 |
+
d. You may add Your own copyright statement to Your modifications and may provide additional or different license terms and conditions for use, reproduction, or distribution of Your modifications, or for any such derivative works as a whole, provided Your use, reproduction, and distribution of the work otherwise complies with the terms and conditions of this Agreement.
|
28 |
+
|
29 |
+
4. Restrictions
|
30 |
+
If you are commercially using the Materials, and your product or service has more than 100 million monthly active users, You shall request a license from Us. You cannot exercise your rights under this Agreement without our express authorization.
|
31 |
+
|
32 |
+
5. Rules of use
|
33 |
+
a. The Materials may be subject to export controls or restrictions in China, the United States or other countries or regions. You shall comply with applicable laws and regulations in your use of the Materials.
|
34 |
+
b. You can not use the Materials or any output therefrom to improve any other large language model (excluding Tongyi Qianwen or derivative works thereof).
|
35 |
+
|
36 |
+
6. Intellectual Property
|
37 |
+
a. We retain ownership of all intellectual property rights in and to the Materials and derivatives made by or for Us. Conditioned upon compliance with the terms and conditions of this Agreement, with respect to any derivative works and modifications of the Materials that are made by you, you are and will be the owner of such derivative works and modifications.
|
38 |
+
b. No trademark license is granted to use the trade names, trademarks, service marks, or product names of Us, except as required to fulfill notice requirements under this Agreement or as required for reasonable and customary use in describing and redistributing the Materials.
|
39 |
+
c. If you commence a lawsuit or other proceedings (including a cross-claim or counterclaim in a lawsuit) against Us or any entity alleging that the Materials or any output therefrom, or any part of the foregoing, infringe any intellectual property or other right owned or licensable by you, then all licences granted to you under this Agreement shall terminate as of the date such lawsuit or other proceeding is commenced or brought.
|
40 |
+
|
41 |
+
7. Disclaimer of Warranty and Limitation of Liability
|
42 |
+
|
43 |
+
a. We are not obligated to support, update, provide training for, or develop any further version of the Tongyi Qianwen Model or to grant any license thereto.
|
44 |
+
b. THE MATERIALS ARE PROVIDED "AS IS" WITHOUT ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND INCLUDING WARRANTIES OF MERCHANTABILITY, NONINFRINGEMENT, OR FITNESS FOR A PARTICULAR PURPOSE. WE MAKE NO WARRANTY AND ASSUME NO RESPONSIBILITY FOR THE SAFETY OR STABILITY OF THE MATERIALS AND ANY OUTPUT THEREFROM.
|
45 |
+
c. IN NO EVENT SHALL WE BE LIABLE TO YOU FOR ANY DAMAGES, INCLUDING, BUT NOT LIMITED TO ANY DIRECT, OR INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES ARISING FROM YOUR USE OR INABILITY TO USE THE MATERIALS OR ANY OUTPUT OF IT, NO MATTER HOW IT’S CAUSED.
|
46 |
+
d. You will indemnify and hold armless Us from and against any claim by any third party arising out of or related to your use or distribution of the Materials.
|
47 |
+
|
48 |
+
8. Survival and Termination.
|
49 |
+
a. The term of this Agreement shall commence upon your acceptance of this Agreement or access to the Materials and will continue in full force and effect until terminated in accordance with the terms and conditions herein.
|
50 |
+
b. We may terminate this Agreement if you breach any of the terms or conditions of this Agreement. Upon termination of this Agreement, you must delete and cease use of the Materials. Sections 7 and 9 shall survive the termination of this Agreement.
|
51 |
+
|
52 |
+
9. Governing Law and Jurisdiction.
|
53 |
+
a. This Agreement and any dispute arising out of or relating to it will be governed by the laws of China, without regard to conflict of law principles, and the UN Convention on Contracts for the International Sale of Goods does not apply to this Agreement.
|
54 |
+
b. The People's Courts in Hangzhou City shall have exclusive jurisdiction over any dispute arising out of this Agreement.
|
NOTICE
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
------------- LICENSE FOR NVIDIA Megatron-LM code --------------
|
2 |
+
|
3 |
+
Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
|
4 |
+
|
5 |
+
Redistribution and use in source and binary forms, with or without
|
6 |
+
modification, are permitted provided that the following conditions
|
7 |
+
are met:
|
8 |
+
* Redistributions of source code must retain the above copyright
|
9 |
+
notice, this list of conditions and the following disclaimer.
|
10 |
+
* Redistributions in binary form must reproduce the above copyright
|
11 |
+
notice, this list of conditions and the following disclaimer in the
|
12 |
+
documentation and/or other materials provided with the distribution.
|
13 |
+
* Neither the name of NVIDIA CORPORATION nor the names of its
|
14 |
+
contributors may be used to endorse or promote products derived
|
15 |
+
from this software without specific prior written permission.
|
16 |
+
|
17 |
+
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
|
18 |
+
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
19 |
+
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
20 |
+
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
21 |
+
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
22 |
+
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
23 |
+
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
24 |
+
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
25 |
+
OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
26 |
+
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
27 |
+
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
README.md
CHANGED
@@ -12,39 +12,40 @@ pipeline_tag: text-generation
|
|
12 |
<p align="center">
|
13 |
<img src="assets/logo.jpg" width="400"/>
|
14 |
<p>
|
|
|
15 |
|
16 |
<p align="center">
|
17 |
-
|
18 |
</p>
|
19 |
-
<br
|
20 |
|
21 |
## 介绍 (Introduction)
|
22 |
|
23 |
-
|
24 |
|
25 |
通义千问-7B(Qwen-7B)主要有以下特点:
|
26 |
|
27 |
1. **大规模高质量训练语料**:使用超过2.2万亿tokens的数据进行预训练,包含高质量中、英、多语言、代码、数学等数据,涵盖通用及专业领域的训练语料。通过大量对比实验对预训练语料分布进行了优化。
|
28 |
2. **强大的性能**:Qwen-7B在多个中英文下游评测任务上(涵盖常识推理、代码、数学、翻译等),效果显著超越现有的相近规模开源模型,甚至在部分指标上相比更大尺寸模型也有较强竞争力。具体评测结果请详见下文。
|
29 |
-
3.
|
30 |
|
31 |
如果您想了解更多关于通义千问7B开源模型的细节,我们建议您参阅Github代码库。
|
32 |
|
33 |
-
|
34 |
|
35 |
-
The features of
|
36 |
|
37 |
1. **Large-scale high-quality training corpora**: It is pretrained on over 2.2 trillion tokens, including Chinese, English, multilingual texts, code, and mathematics, covering general and professional fields. The distribution of the pre-training corpus has been optimized through a large number of ablation experiments.
|
38 |
2. **Competitive performance**: It significantly surpasses existing open-source models of similar scale on multiple Chinese and English downstream evaluation tasks (including commonsense, reasoning, code, mathematics, etc.), and even surpasses some larger-scale models in several benchmarks. See below for specific evaluation results.
|
39 |
-
3. **More comprehensive vocabulary coverage**: Compared with other open-source models based on Chinese and English vocabularies,
|
40 |
|
41 |
-
For more details about the open-source model of
|
42 |
|
43 |
## 依赖项 (Dependency)
|
44 |
|
45 |
-
|
46 |
|
47 |
-
To run Qwen-7B, please make sure that pytorch version is not lower than 1.12, and then execute the following pip commands to install the
|
48 |
|
49 |
```bash
|
50 |
pip install transformers==4.31.0 accelerate tiktoken einops
|
@@ -88,9 +89,9 @@ For more information, please refer to our Github repo for more information.
|
|
88 |
|
89 |
## 模型细节 (Model)
|
90 |
|
91 |
-
|
92 |
|
93 |
-
The details of the model architecture of
|
94 |
|
95 |
| Hyperparameter | Value |
|
96 |
|:---------------:|-------:|
|
@@ -100,19 +101,17 @@ The details of the model architecture of `Qwen-7B` are listed as follows:
|
|
100 |
| vocab size | 151851 |
|
101 |
| sequence length | 2048 |
|
102 |
|
103 |
-
|
104 |
在位置编码、FFN激活函数和normalization的实现方式上,我们也采用了目前最流行的做法,
|
105 |
即RoPE相对位置编码、SwiGLU激活函数、RMSNorm(可选安装flash-attention加速)。
|
106 |
|
107 |
-
|
108 |
-
该词表在GPT-4使用的BPE词表`cl100k_base`基础上,对中文、多语言进行了优化,在对中、英、代码数据的高效编解码的基础上,对部分多语言更加友好,方便用户在不扩展词表的情况下对部分语种进行能力增强。
|
109 |
词表对数字按单个数字位切分。调用较为高效的[tiktoken分词库](https://github.com/openai/tiktoken)进行分词。
|
110 |
|
111 |
我们从部分语种各随机抽取100万个文档语料,以对比不同模型的编码压缩率(以支持100语种的XLM-R为基准值1,越低越好),具体性能见图。
|
112 |
|
113 |
-
|
114 |
|
115 |
-
|
116 |
另一方面也积累了海量全网语料以及高质量文本内容,去重及过滤后的语料超过2.2T tokens。
|
117 |
囊括全网文本、百科、书籍、代码、数学及各个领域垂类。
|
118 |
|
@@ -122,13 +121,13 @@ The details of the model architecture of `Qwen-7B` are listed as follows:
|
|
122 |
|
123 |
For position encoding, FFN activation function, and normalization methods, we adopt the prevalent practices, i.e., RoPE relative position encoding, SwiGLU for activation function, and RMSNorm for normalization (optional installation of flash-attention for acceleration).
|
124 |
|
125 |
-
For tokenization, compared to the current mainstream open-source models based on Chinese and English vocabularies,
|
126 |
|
127 |
We randomly selected 1 million document corpus of each language to test and compare the encoding compression rates of different models (with XLM-R, which supports 100 languages, as the base value 1). The specific performance is shown in the figure above.
|
128 |
|
129 |
-
As can be seen, while ensuring the efficient decoding of Chinese, English, and code,
|
130 |
|
131 |
-
For pre-training data, on the one hand,
|
132 |
|
133 |
## 评测效果(Evaluation)
|
134 |
|
@@ -137,13 +136,13 @@ For pre-training data, on the one hand, `Qwen-7B` uses part of the open-source g
|
|
137 |
#### C-Eval
|
138 |
|
139 |
[C-Eval](https://arxiv.org/abs/2305.08322)是评测预训练模型中文常识能力的常用测评框架,覆盖人文、社科、理工、其他专业四个大方向共52个学科。
|
140 |
-
我们按照标准做法,以开发集样本作为few-shot
|
141 |
|
142 |
-
[C-Eval](https://arxiv.org/abs/2305.08322) is a common evaluation benchmark for testing the common sense capability of pre-trained models in Chinese. It covers 52 subjects in four major directions: humanities, social sciences, STEM, and other specialties. According to the standard practice, we use the development set samples as the source of few-shot, to evaluate the 5-shot validation set and test set accuracy of the
|
143 |
|
144 |
-
在C-Eval
|
145 |
|
146 |
-
The accuracy comparison of
|
147 |
|
148 |
| Model | Avg. |
|
149 |
|:---------------:|---------:|
|
@@ -159,7 +158,7 @@ The accuracy comparison of `Qwen-7B` and the other models on the C-Eval validati
|
|
159 |
|
160 |
在C-Eval测试集上,Qwen-7B预训练模型与其他模型的效果对比如下表所示:
|
161 |
|
162 |
-
The performance comparison of
|
163 |
|
164 |
| Model | Avg. | Avg. (Hard) | STEM | Social Sciences | Humanities | Others |
|
165 |
|:--------------:|------:|------:|------:|------:|------:|------:|
|
@@ -176,9 +175,9 @@ The performance comparison of `Qwen-7B` and other models on the C-Eval test set
|
|
176 |
| ChatGPT | 54.4 | 41.4 | 52.9 | 61.8 | 50.9 | 53.6 |
|
177 |
| **Qwen-7B** | **59.6** | 41.0 | 52.8 | 74.1 | 63.1 | 55.2 |
|
178 |
|
179 |
-
|
180 |
|
181 |
-
As can be seen,
|
182 |
|
183 |
### 英文评测(English Evaluation)
|
184 |
|
@@ -186,9 +185,9 @@ As can be seen, `Qwen-7B` achieves the best performance out of all existing mode
|
|
186 |
|
187 |
[MMLU](https://arxiv.org/abs/2009.03300)是目前评测英文综合能力最权威的基准评测之一,同样覆盖了不同学科领域、不同难度层级的57个子任务。
|
188 |
|
189 |
-
|
190 |
|
191 |
-
[MMLU](https://arxiv.org/abs/2009.03300) is currently one of the most recognized benchmarks for evaluating English comprehension abilities, covering 57 subtasks across different academic fields and difficulty levels. The MMLU 5-shot accuracy performance of
|
192 |
|
193 |
| Model | Avg. | STEM | Social Sciences | Humanities | Others |
|
194 |
|:--------------:|------:|------:|------:|------:|------:|
|
@@ -203,9 +202,9 @@ As can be seen, `Qwen-7B` achieves the best performance out of all existing mode
|
|
203 |
| ChatGLM2-12B | 56.2 | 48.2 | 65.1 | 52.6 | 60.9 |
|
204 |
| **Qwen-7B** | **56.7** | 47.6 | 65.9 | 51.5 | 64.7 |
|
205 |
|
206 |
-
|
207 |
|
208 |
-
In terms of English,
|
209 |
|
210 |
### 代码评测(Coding Evaluation)
|
211 |
|
@@ -253,24 +252,28 @@ We compared the math capabilities of pre-trained models on [GSM8K](https://githu
|
|
253 |
|
254 |
We compared the translation capabilities of pre-trained models on [WMT22](https://www.statmt.org/wmt22/translation-task.html) zh-en and en-zh (5-shot BLEU), and the results are as follows:
|
255 |
|
256 |
-
|
|
257 |
-
|
258 |
-
| InternLM-7B |
|
259 |
-
|
|
260 |
-
|
|
261 |
-
|
|
262 |
-
|
|
263 |
-
| LLaMA2-13B
|
264 |
-
| PolyLM-13B
|
265 |
-
| Baichuan-7B |
|
266 |
| **Qwen-7B** | **27.5** | **24.3** | **30.6** |
|
267 |
|
268 |
### 长序列评测(Long-Context Evaluation)
|
269 |
|
270 |
-
我们引入NTK插值,LogN注意力缩放,窗口注意力等技巧,将模型的上下文长度扩展到8K以上。在arXiv数据上使用PPL
|
|
|
|
|
271 |
|
272 |
We introduce NTK-aware interpolation, LogN attention scaling, Window attention, etc. to extend the context length to over 8K tokens. We conduct language modeling experiments on the arXiv dataset with the PPL evaluation. Results are demonstrated below:
|
273 |
|
|
|
|
|
274 |
<table>
|
275 |
<tr>
|
276 |
<th rowspan="2">Model</th><th colspan="5" align="center">序列长度 Sequence Length</th>
|
@@ -288,7 +291,7 @@ We introduce NTK-aware interpolation, LogN attention scaling, Window attention,
|
|
288 |
<td>+ dynamic_ntk + logn</td><td align="center"><b>4.23</b></td><td align="center"><b>3.78</b></td><td align="center"><b>3.58</b></td><td align="center">3.56</td><td align="center">4.62</td>
|
289 |
</tr>
|
290 |
<tr>
|
291 |
-
<td>+ dynamic_ntk + logn +
|
292 |
</tr>
|
293 |
</table>
|
294 |
|
@@ -322,7 +325,7 @@ model = AutoModelForCausalLM.from_pretrained(
|
|
322 |
|
323 |
上述方法可以让我们将模型量化成`NF4`和`Int8`精度的模型进行读取,帮助我们节省显存开销。我们也提供了相关性能数据。我们发现尽管模型在效果上存在损失,但模型的显存开销大幅降低。
|
324 |
|
325 |
-
With this method, it is available to load
|
326 |
|
327 |
| Precision | MMLU | Memory |
|
328 |
| :---------: | -------: | -----: |
|
@@ -330,8 +333,6 @@ With this method, it is available to load `Qwen-7B` in `NF4`and`Int8`, which sav
|
|
330 |
| Int8 | 52.8 | 10.1G |
|
331 |
| NF4 | 48.9 | 7.4G |
|
332 |
|
333 |
-
|
334 |
-
|
335 |
## 评测复现(Reproduction)
|
336 |
|
337 |
我们提供了评测脚本,方便大家复现模型效果,详见[链接](eval/EVALUATION.md)。提示:由于硬件和框架造成的舍入误差,复现结果如有小幅波动属于正常现象。
|
@@ -342,12 +343,11 @@ We have provided evaluation scripts to reproduce the performance of our model, d
|
|
342 |
|
343 |
我们的代码和模型权重对学术研究完全开放,并支持商用。请查看LICENSE了解具体的开源协议细节。
|
344 |
|
345 |
-
Our code and checkpoints are open to research purpose, and they are allowed for commercial purposes. Check LICENSE
|
346 |
|
347 |
## 联系我们(Contact Us)
|
348 |
|
349 |
如果你想给我们的研发团队和产品团队留言,请通过邮件(qianwen_opensource@alibabacloud.com)联系我们。
|
350 |
|
351 |
-
|
352 |
If you are interested to leave a message to either our research team or product team, feel free to send an email to qianwen_opensource@alibabacloud.com.
|
353 |
|
|
|
12 |
<p align="center">
|
13 |
<img src="assets/logo.jpg" width="400"/>
|
14 |
<p>
|
15 |
+
<br>
|
16 |
|
17 |
<p align="center">
|
18 |
+
Qwen-7B <a href="https://modelscope.cn/models/qwen/Qwen-7B/summary">🤖 <a> | <a href="https://huggingface.co/Qwen/Qwen-7B">🤗</a>  | Qwen-7B-Chat <a href="https://modelscope.cn/models/qwen/Qwen-7B-Chat/summary">🤖 <a>| <a href="https://huggingface.co/Qwen/Qwen-7B-Chat">🤗</a>  |  Demo  |  <a href="https://github.com/QwenLM/Qwen-7B/tech_memo.md">Report</a>
|
19 |
</p>
|
20 |
+
<br>
|
21 |
|
22 |
## 介绍 (Introduction)
|
23 |
|
24 |
+
**通义千问-7B(Qwen-7B)**是阿里云研发的通义千问大模型系列的70亿参数规模的模型。Qwen-7B是基于Transformer的大语言模型, 在超大规模的预训练数据上进行训练得到。预训练数据类型多样,覆盖广泛,包括大量网络文本、专业书籍、代码等。同时,在Qwen-7B的基础上,我们使用对齐机制打造了基于大语言模型的AI助手Qwen-7B-Chat。本仓库为Qwen-7B的仓库。
|
25 |
|
26 |
通义千问-7B(Qwen-7B)主要有以下特点:
|
27 |
|
28 |
1. **大规模高质量训练语料**:使用超过2.2万亿tokens的数据进行预训练,包含高质量中、英、多语言、代码、数学等数据,涵盖通用及专业领域的训练语料。通过大量对比实验对预训练语料分布进行了优化。
|
29 |
2. **强大的性能**:Qwen-7B在多个中英文下游评测任务上(涵盖常识推理、代码、数学、翻译等),效果显著超越现有的相近规模开源模型,甚至在部分指标上相比更大尺寸模型也有较强竞争力。具体评测结果请详见下文。
|
30 |
+
3. **覆盖更全面的词表**:相比目前以中英词表为主的开源模型,Qwen-7B使用了约15万大小的词表。该词表对多语言更加友好,方便用户在不扩展词表的情况下对部分语种进行能力增强和扩展。
|
31 |
|
32 |
如果您想了解更多关于通义千问7B开源模型的细节,我们建议您参阅Github代码库。
|
33 |
|
34 |
+
**Qwen-7B** is the 7B-parameter version of the large language model series, Qwen (abbr. Tongyi Qianwen), proposed by Aibaba Cloud. Qwen-7B is a Transformer-based large language model, which is pretrained on a large volume of data, including web texts, books, codes, etc. Additionally, based on the pretrained Qwen-7B, we release Qwen-7B-Chat, a large-model-based AI assistant, which is trained with alignment techniques. This repository is the one for Qwen-7B.
|
35 |
|
36 |
+
The features of Qwen-7B include:
|
37 |
|
38 |
1. **Large-scale high-quality training corpora**: It is pretrained on over 2.2 trillion tokens, including Chinese, English, multilingual texts, code, and mathematics, covering general and professional fields. The distribution of the pre-training corpus has been optimized through a large number of ablation experiments.
|
39 |
2. **Competitive performance**: It significantly surpasses existing open-source models of similar scale on multiple Chinese and English downstream evaluation tasks (including commonsense, reasoning, code, mathematics, etc.), and even surpasses some larger-scale models in several benchmarks. See below for specific evaluation results.
|
40 |
+
3. **More comprehensive vocabulary coverage**: Compared with other open-source models based on Chinese and English vocabularies, Qwen-7B uses a vocabulary of over 150K tokens. This vocabulary is more friendly to multiple languages, enabling users to directly further enhance the capability for certain languages without expanding the vocabulary.
|
41 |
|
42 |
+
For more details about the open-source model of Qwen-7B, please refer to the Github code repository.
|
43 |
|
44 |
## 依赖项 (Dependency)
|
45 |
|
46 |
+
运行Qwen-7B,请确保机器环境torch版本不低于1.12,再执行以下pip命令安装依赖库
|
47 |
|
48 |
+
To run Qwen-7B, please make sure that pytorch version is not lower than 1.12, and then execute the following pip commands to install the dependent libraries.
|
49 |
|
50 |
```bash
|
51 |
pip install transformers==4.31.0 accelerate tiktoken einops
|
|
|
89 |
|
90 |
## 模型细节 (Model)
|
91 |
|
92 |
+
Qwen-7B模型规模基本情况如下所示:
|
93 |
|
94 |
+
The details of the model architecture of Qwen-7B are listed as follows:
|
95 |
|
96 |
| Hyperparameter | Value |
|
97 |
|:---------------:|-------:|
|
|
|
101 |
| vocab size | 151851 |
|
102 |
| sequence length | 2048 |
|
103 |
|
|
|
104 |
在位置编码、FFN激活函数和normalization的实现方式上,我们也采用了目前最流行的做法,
|
105 |
即RoPE相对位置编码、SwiGLU激活函数、RMSNorm(可选安装flash-attention加速)。
|
106 |
|
107 |
+
在分词器方面,相比目前主流开源模型以中英词表为主,Qwen-7B使用了超过15万token大小的词表。 该词表在GPT-4使用的BPE词表`cl100k_base`基础上,对中文、多语言进行了优化,在对中、英、代码数据的高效编解码的基础上,对部分多语言更加友好,方便用户在不扩展词表的情况下对部分语种进行能力增强。
|
|
|
108 |
词表对数字按单个数字位切分。调用较为高效的[tiktoken分词库](https://github.com/openai/tiktoken)进行分词。
|
109 |
|
110 |
我们从部分语种各随机抽取100万个文档语料,以对比不同模型的编码压缩率(以支持100语种的XLM-R为基准值1,越低越好),具体性能见图。
|
111 |
|
112 |
+
可以看到Qwen-7B在保持中英代码高效解码的前提下,对部分使用人群较多的语种(泰语th、希伯来语he、阿拉伯语ar、韩语ko、越南语vi、日语ja、土耳其语tr、印尼语id、波兰语pl、俄语ru、荷兰语nl、葡萄牙语pt、意大利语it、德语de、西班牙语es、法语fr等)上也实现了较高的压缩率,使得模型在这些语种上也具备较强的可扩展性和较高的训练和推理效率。
|
113 |
|
114 |
+
在预训练数据方面,Qwen-7B模型一方面利用了部分开源通用语料,
|
115 |
另一方面也积累了海量全网语料以及高质量文本内容,去重及过滤后的语料超过2.2T tokens。
|
116 |
囊括全网文本、百科、书籍、代码、数学及各个领域垂类。
|
117 |
|
|
|
121 |
|
122 |
For position encoding, FFN activation function, and normalization methods, we adopt the prevalent practices, i.e., RoPE relative position encoding, SwiGLU for activation function, and RMSNorm for normalization (optional installation of flash-attention for acceleration).
|
123 |
|
124 |
+
For tokenization, compared to the current mainstream open-source models based on Chinese and English vocabularies, Qwen-7B uses a vocabulary of over 150K tokens. It first considers efficient encoding of Chinese, English, and code data, and is also more friendly to multilingual languages, enabling users to directly enhance the capability of some languages without expanding the vocabulary. It segments numbers by single digit, and calls the [tiktoken](https://github.com/openai/tiktoken) tokenizer library for efficient tokenization.
|
125 |
|
126 |
We randomly selected 1 million document corpus of each language to test and compare the encoding compression rates of different models (with XLM-R, which supports 100 languages, as the base value 1). The specific performance is shown in the figure above.
|
127 |
|
128 |
+
As can be seen, while ensuring the efficient decoding of Chinese, English, and code, Qwen-7B also achieves a high compression rate for many other languages (such as th, he, ar, ko, vi, ja, tr, id, pl, ru, nl, pt, it, de, es, fr etc.), equipping the model with strong scalability as well as high training and inference efficiency in these languages.
|
129 |
|
130 |
+
For pre-training data, on the one hand, Qwen-7B uses part of the open-source generic corpus. On the other hand, it uses a massive amount of accumulated web corpus and high-quality text content. The scale of corpus reaches over 2.2T tokens after deduplication and filtration, encompassing web text, encyclopedias, books, code, mathematics, and various domain.
|
131 |
|
132 |
## 评测效果(Evaluation)
|
133 |
|
|
|
136 |
#### C-Eval
|
137 |
|
138 |
[C-Eval](https://arxiv.org/abs/2305.08322)是评测预训练模型中文常识能力的常用测评框架,覆盖人文、社科、理工、其他专业四个大方向共52个学科。
|
139 |
+
我们按照标准做法,以开发集样本作为few-shot来源,评价Qwen-7B预训练模型的5-shot验证集与测试集准确率。
|
140 |
|
141 |
+
[C-Eval](https://arxiv.org/abs/2305.08322) is a common evaluation benchmark for testing the common sense capability of pre-trained models in Chinese. It covers 52 subjects in four major directions: humanities, social sciences, STEM, and other specialties. According to the standard practice, we use the development set samples as the source of few-shot, to evaluate the 5-shot validation set and test set accuracy of the Qwen-7B pre-trained model.
|
142 |
|
143 |
+
在C-Eval验证集上,Qwen-7B模型和其他模型的准确率对比如下:
|
144 |
|
145 |
+
The accuracy comparison of Qwen-7B and the other models on the C-Eval validation set is shown as follows:
|
146 |
|
147 |
| Model | Avg. |
|
148 |
|:---------------:|---------:|
|
|
|
158 |
|
159 |
在C-Eval测试集上,Qwen-7B预训练模型与其他模型的效果对比如下表所示:
|
160 |
|
161 |
+
The performance comparison of Qwen-7B and other models on the C-Eval test set is shown in the following table:
|
162 |
|
163 |
| Model | Avg. | Avg. (Hard) | STEM | Social Sciences | Humanities | Others |
|
164 |
|:--------------:|------:|------:|------:|------:|------:|------:|
|
|
|
175 |
| ChatGPT | 54.4 | 41.4 | 52.9 | 61.8 | 50.9 | 53.6 |
|
176 |
| **Qwen-7B** | **59.6** | 41.0 | 52.8 | 74.1 | 63.1 | 55.2 |
|
177 |
|
178 |
+
可以看到,Qwen-7B在同等规模现有模型中取得了最高的分数,甚至相比更大规模模型也具有较强竞争力。
|
179 |
|
180 |
+
As can be seen, Qwen-7B achieves the best performance out of all existing models with similar scale and even surpasses larger-scale models.
|
181 |
|
182 |
### 英文评测(English Evaluation)
|
183 |
|
|
|
185 |
|
186 |
[MMLU](https://arxiv.org/abs/2009.03300)是目前评测英文综合能力最权威的基准评测之一,同样覆盖了不同学科领域、不同难度层级的57个子任务。
|
187 |
|
188 |
+
Qwen-7B在MMLU 5-shot准确率表现如下表:
|
189 |
|
190 |
+
[MMLU](https://arxiv.org/abs/2009.03300) is currently one of the most recognized benchmarks for evaluating English comprehension abilities, covering 57 subtasks across different academic fields and difficulty levels. The MMLU 5-shot accuracy performance of Qwen-7B is shown in the following table:
|
191 |
|
192 |
| Model | Avg. | STEM | Social Sciences | Humanities | Others |
|
193 |
|:--------------:|------:|------:|------:|------:|------:|
|
|
|
202 |
| ChatGLM2-12B | 56.2 | 48.2 | 65.1 | 52.6 | 60.9 |
|
203 |
| **Qwen-7B** | **56.7** | 47.6 | 65.9 | 51.5 | 64.7 |
|
204 |
|
205 |
+
在英文方面,Qwen-7B的效果同样超过了目前国内外其他同类开源预训练模型,同样对比更大规模版本的模型也具有较强竞争力。
|
206 |
|
207 |
+
In terms of English, Qwen-7B also surpasses other similar open-source pre-trained models, and is competitive when compared to larger versions of other models.
|
208 |
|
209 |
### 代码评测(Coding Evaluation)
|
210 |
|
|
|
252 |
|
253 |
We compared the translation capabilities of pre-trained models on [WMT22](https://www.statmt.org/wmt22/translation-task.html) zh-en and en-zh (5-shot BLEU), and the results are as follows:
|
254 |
|
255 |
+
| Model | Avg. | zh-en | en-zh |
|
256 |
+
|:-----------:|---------:|---------:|---------:|
|
257 |
+
| InternLM-7B | 11.8 | 9.0 | 14.5 |
|
258 |
+
| LLaMA-7B | 12.7 | 16.7 | 8.7 |
|
259 |
+
| LLaMA-13B | 15.8 | 19.5 | 12.0 |
|
260 |
+
| LLaMA2-7B | 19.9 | 21.9 | 17.9 |
|
261 |
+
| Bloom-7B | 20.3 | 19.1 | 21.4 |
|
262 |
+
| LLaMA2-13B | 23.3 | 22.4 | 24.2 |
|
263 |
+
| PolyLM-13B | 23.6 | 20.2 | 27.0 |
|
264 |
+
| Baichuan-7B | 24.6 | 22.6 | 26.6 |
|
265 |
| **Qwen-7B** | **27.5** | **24.3** | **30.6** |
|
266 |
|
267 |
### 长序列评测(Long-Context Evaluation)
|
268 |
|
269 |
+
我们引入NTK插值,LogN注意力缩放,窗口注意力等技巧,将模型的上下文长度扩展到8K以上。在arXiv数据上使用PPL指标测试Qwen-7B在不同长度下的表现,结果如下:
|
270 |
+
|
271 |
+
**(若要启用NTK和LogN注意力缩放,请将config.json里的`use_dynamc_ntk`和`use_logn_attn`设置为true)**
|
272 |
|
273 |
We introduce NTK-aware interpolation, LogN attention scaling, Window attention, etc. to extend the context length to over 8K tokens. We conduct language modeling experiments on the arXiv dataset with the PPL evaluation. Results are demonstrated below:
|
274 |
|
275 |
+
**(To use NTK interpolation and LogN scaling, please set `use_dynamic_ntk` and `use_long_attn` to true in config.json.)**
|
276 |
+
|
277 |
<table>
|
278 |
<tr>
|
279 |
<th rowspan="2">Model</th><th colspan="5" align="center">序列长度 Sequence Length</th>
|
|
|
291 |
<td>+ dynamic_ntk + logn</td><td align="center"><b>4.23</b></td><td align="center"><b>3.78</b></td><td align="center"><b>3.58</b></td><td align="center">3.56</td><td align="center">4.62</td>
|
292 |
</tr>
|
293 |
<tr>
|
294 |
+
<td>+ dynamic_ntk + logn + window_attn</td><td align="center"><b>4.23</b></td><td align="center"><b>3.78</b></td><td align="center"><b>3.58</b></td><td align="center"><b>3.49</b></td><td align="center"><b>4.32</b></td>
|
295 |
</tr>
|
296 |
</table>
|
297 |
|
|
|
325 |
|
326 |
上述方法可以让我们将模型量化成`NF4`和`Int8`精度的模型进行读取,帮助我们节省显存开销。我们也提供了相关性能数据。我们发现尽管模型在效果上存在损失,但模型的显存开销大幅降低。
|
327 |
|
328 |
+
With this method, it is available to load Qwen-7B in `NF4` and `Int8`, which saves you memory usage. We provide related statistics of model performance below. We find that the quantization downgrades the effectiveness slightly but significantly increases inference efficiency and reduces memory costs.
|
329 |
|
330 |
| Precision | MMLU | Memory |
|
331 |
| :---------: | -------: | -----: |
|
|
|
333 |
| Int8 | 52.8 | 10.1G |
|
334 |
| NF4 | 48.9 | 7.4G |
|
335 |
|
|
|
|
|
336 |
## 评测复现(Reproduction)
|
337 |
|
338 |
我们提供了评测脚本,方便大家复现模型效果,详见[链接](eval/EVALUATION.md)。提示:由于硬件和框架造成的舍入误差,复现结果如有小幅波动属于正常现象。
|
|
|
343 |
|
344 |
我们的代码和模型权重对学术研究完全开放,并支持商用。请查看LICENSE了解具体的开源协议细节。
|
345 |
|
346 |
+
Our code and checkpoints are open to research purpose, and they are allowed for commercial purposes. Check [LICENSE](LICENSE) for more details about the license.
|
347 |
|
348 |
## 联系我们(Contact Us)
|
349 |
|
350 |
如果你想给我们的研发团队和产品团队留言,请通过邮件(qianwen_opensource@alibabacloud.com)联系我们。
|
351 |
|
|
|
352 |
If you are interested to leave a message to either our research team or product team, feel free to send an email to qianwen_opensource@alibabacloud.com.
|
353 |
|
assets/logo.jpg
ADDED
assets/qwen_tokenizer.png
ADDED
config.json
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"activation": "swiglu",
|
3 |
+
"apply_residual_connection_post_layernorm": false,
|
4 |
+
"architectures": [
|
5 |
+
"QWenLMHeadModel"
|
6 |
+
],
|
7 |
+
"auto_map": {
|
8 |
+
"AutoConfig": "configuration_qwen.QWenConfig",
|
9 |
+
"AutoModelForCausalLM": "modeling_qwen.QWenLMHeadModel"
|
10 |
+
},
|
11 |
+
"attn_pdrop": 0.0,
|
12 |
+
"bf16": true,
|
13 |
+
"bias_dropout_fusion": true,
|
14 |
+
"bos_token_id": 151643,
|
15 |
+
"embd_pdrop": 0.1,
|
16 |
+
"eos_token_id": 151643,
|
17 |
+
"ffn_hidden_size": 22016,
|
18 |
+
"fp16": false,
|
19 |
+
"initializer_range": 0.02,
|
20 |
+
"kv_channels": 128,
|
21 |
+
"layer_norm_epsilon": 1e-05,
|
22 |
+
"model_type": "qwen",
|
23 |
+
"n_embd": 4096,
|
24 |
+
"n_head": 32,
|
25 |
+
"n_layer": 32,
|
26 |
+
"n_positions": 6144,
|
27 |
+
"no_bias": true,
|
28 |
+
"onnx_safe": null,
|
29 |
+
"padded_vocab_size": 151936,
|
30 |
+
"params_dtype": "torch.bfloat16",
|
31 |
+
"pos_emb": "rotary",
|
32 |
+
"resid_pdrop": 0.1,
|
33 |
+
"rotary_emb_base": 10000,
|
34 |
+
"rotary_pct": 1.0,
|
35 |
+
"scale_attn_weights": true,
|
36 |
+
"seq_length": 2048,
|
37 |
+
"tie_word_embeddings": false,
|
38 |
+
"tokenizer_type": "QWenTokenizer",
|
39 |
+
"transformers_version": "4.31.0",
|
40 |
+
"use_cache": true,
|
41 |
+
"use_flash_attn": false,
|
42 |
+
"vocab_size": 151936,
|
43 |
+
"use_dynamic_ntk": false,
|
44 |
+
"use_logn_attn": false
|
45 |
+
}
|
configuration_qwen.py
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Alibaba Cloud.
|
2 |
+
#
|
3 |
+
# This source code is licensed under the license found in the
|
4 |
+
# LICENSE file in the root directory of this source tree.
|
5 |
+
|
6 |
+
from transformers import PretrainedConfig
|
7 |
+
|
8 |
+
|
9 |
+
class QWenConfig(PretrainedConfig):
|
10 |
+
model_type = "qwen"
|
11 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
12 |
+
attribute_map = {
|
13 |
+
"hidden_size": "n_embd",
|
14 |
+
"num_attention_heads": "n_head",
|
15 |
+
"max_position_embeddings": "n_positions",
|
16 |
+
"num_hidden_layers": "n_layer",
|
17 |
+
}
|
18 |
+
|
19 |
+
def __init__(
|
20 |
+
self,
|
21 |
+
vocab_size=151851,
|
22 |
+
n_embd=4096,
|
23 |
+
n_layer=32,
|
24 |
+
n_head=32,
|
25 |
+
n_inner=None,
|
26 |
+
embd_pdrop=0.0,
|
27 |
+
attn_pdrop=0.0,
|
28 |
+
layer_norm_epsilon=1e-5,
|
29 |
+
initializer_range=0.02,
|
30 |
+
scale_attn_weights=True,
|
31 |
+
use_cache=True,
|
32 |
+
eos_token_id=151643,
|
33 |
+
apply_residual_connection_post_layernorm=False,
|
34 |
+
bf16=True,
|
35 |
+
kv_channels=128,
|
36 |
+
rotary_pct=1.0,
|
37 |
+
rotary_emb_base=10000,
|
38 |
+
use_dynamic_ntk=False,
|
39 |
+
use_logn_attn=False,
|
40 |
+
use_flash_attn=True,
|
41 |
+
ffn_hidden_size=22016,
|
42 |
+
no_bias=True,
|
43 |
+
tie_word_embeddings=False,
|
44 |
+
**kwargs,
|
45 |
+
):
|
46 |
+
self.eos_token_id = eos_token_id
|
47 |
+
super().__init__(
|
48 |
+
eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs
|
49 |
+
)
|
50 |
+
|
51 |
+
self.vocab_size = vocab_size
|
52 |
+
self.n_embd = n_embd
|
53 |
+
self.n_layer = n_layer
|
54 |
+
self.n_head = n_head
|
55 |
+
self.n_inner = n_inner
|
56 |
+
self.embd_pdrop = embd_pdrop
|
57 |
+
self.attn_pdrop = attn_pdrop
|
58 |
+
self.layer_norm_epsilon = layer_norm_epsilon
|
59 |
+
self.initializer_range = initializer_range
|
60 |
+
self.scale_attn_weights = scale_attn_weights
|
61 |
+
self.use_cache = use_cache
|
62 |
+
self.apply_residual_connection_post_layernorm = (
|
63 |
+
apply_residual_connection_post_layernorm
|
64 |
+
)
|
65 |
+
self.bf16 = bf16
|
66 |
+
self.kv_channels = kv_channels
|
67 |
+
self.rotary_pct = rotary_pct
|
68 |
+
self.rotary_emb_base = rotary_emb_base
|
69 |
+
self.use_dynamic_ntk = use_dynamic_ntk
|
70 |
+
self.use_logn_attn = use_logn_attn
|
71 |
+
self.use_flash_attn = use_flash_attn
|
72 |
+
self.ffn_hidden_size = ffn_hidden_size
|
73 |
+
self.no_bias = no_bias
|
74 |
+
self.tie_word_embeddings = tie_word_embeddings
|
generation_config.json
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"chat_format": "raw",
|
3 |
+
"decay_bound": 0.0,
|
4 |
+
"decay_factor": 1.0,
|
5 |
+
"eos_token_id": 151643,
|
6 |
+
"factual_nucleus_sampling": false,
|
7 |
+
"max_context_size": 1024,
|
8 |
+
"max_generate_size": 512,
|
9 |
+
"max_new_tokens": 512,
|
10 |
+
"pad_token_id": 151643,
|
11 |
+
"stop_words_ids": [[151643]],
|
12 |
+
"do_sample": true,
|
13 |
+
"top_k": 0,
|
14 |
+
"top_p": 0.8,
|
15 |
+
"transformers_version": "4.31.0"
|
16 |
+
}
|
modeling_qwen.py
ADDED
@@ -0,0 +1,1027 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Alibaba Cloud.
|
2 |
+
#
|
3 |
+
# This source code is licensed under the license found in the
|
4 |
+
# LICENSE file in the root directory of this source tree.
|
5 |
+
|
6 |
+
import importlib
|
7 |
+
import math
|
8 |
+
from typing import TYPE_CHECKING, Optional, Tuple, Union, Callable, List
|
9 |
+
|
10 |
+
import torch
|
11 |
+
import torch.nn.functional as F
|
12 |
+
import torch.utils.checkpoint
|
13 |
+
from torch.cuda.amp import autocast
|
14 |
+
|
15 |
+
from torch.nn import CrossEntropyLoss
|
16 |
+
from transformers import PreTrainedTokenizer, GenerationConfig, StoppingCriteriaList
|
17 |
+
from transformers.generation.logits_process import LogitsProcessorList
|
18 |
+
if TYPE_CHECKING:
|
19 |
+
from transformers.generation.streamers import BaseStreamer
|
20 |
+
from transformers.generation.utils import GenerateOutput
|
21 |
+
from transformers.modeling_outputs import (
|
22 |
+
BaseModelOutputWithPast,
|
23 |
+
CausalLMOutputWithPast,
|
24 |
+
)
|
25 |
+
from transformers.modeling_utils import PreTrainedModel
|
26 |
+
from transformers.utils import logging
|
27 |
+
|
28 |
+
try:
|
29 |
+
from einops import rearrange
|
30 |
+
except ImportError:
|
31 |
+
rearrange = None
|
32 |
+
from torch import nn
|
33 |
+
|
34 |
+
try:
|
35 |
+
from flash_attn.layers.rotary import apply_rotary_emb_func
|
36 |
+
from einops import rearrange
|
37 |
+
|
38 |
+
use_flash_rotary = True
|
39 |
+
print("use flash_attn rotary")
|
40 |
+
except ImportError:
|
41 |
+
use_flash_rotary = False
|
42 |
+
print("import flash_attn rotary fail")
|
43 |
+
|
44 |
+
try:
|
45 |
+
from flash_attn.ops.rms_norm import rms_norm
|
46 |
+
|
47 |
+
print("use flash_attn rms_norm")
|
48 |
+
except ImportError:
|
49 |
+
rms_norm = None
|
50 |
+
print("import flash_attn rms_norm fail")
|
51 |
+
|
52 |
+
from .configuration_qwen import QWenConfig
|
53 |
+
from .qwen_generation_utils import (
|
54 |
+
HistoryType,
|
55 |
+
make_context,
|
56 |
+
decode_tokens,
|
57 |
+
get_stop_words_ids,
|
58 |
+
StopWordsLogitsProcessor,
|
59 |
+
)
|
60 |
+
|
61 |
+
|
62 |
+
logger = logging.get_logger(__name__)
|
63 |
+
|
64 |
+
_CHECKPOINT_FOR_DOC = "qwen"
|
65 |
+
_CONFIG_FOR_DOC = "QWenConfig"
|
66 |
+
|
67 |
+
QWen_PRETRAINED_MODEL_ARCHIVE_LIST = ["qwen-7b"]
|
68 |
+
|
69 |
+
try:
|
70 |
+
from flash_attn.flash_attn_interface import flash_attn_unpadded_func
|
71 |
+
except ImportError:
|
72 |
+
flash_attn_unpadded_func = None
|
73 |
+
|
74 |
+
|
75 |
+
class FlashSelfAttention(torch.nn.Module):
|
76 |
+
def __init__(
|
77 |
+
self,
|
78 |
+
causal=False,
|
79 |
+
softmax_scale=None,
|
80 |
+
attention_dropout=0.0,
|
81 |
+
):
|
82 |
+
super().__init__()
|
83 |
+
assert flash_attn_unpadded_func is not None, (
|
84 |
+
"Please install FlashAttention first, " "e.g., with pip install flash-attn"
|
85 |
+
)
|
86 |
+
assert (
|
87 |
+
rearrange is not None
|
88 |
+
), "Please install einops first, e.g., with pip install einops"
|
89 |
+
self.causal = causal
|
90 |
+
self.softmax_scale = softmax_scale
|
91 |
+
self.dropout_p = attention_dropout
|
92 |
+
|
93 |
+
def forward(self, q, k, v):
|
94 |
+
assert all((i.dtype in [torch.float16, torch.bfloat16] for i in (q, k, v)))
|
95 |
+
assert all((i.is_cuda for i in (q, k, v)))
|
96 |
+
batch_size, seqlen_q = q.shape[0], q.shape[1]
|
97 |
+
seqlen_k = k.shape[1]
|
98 |
+
q, k, v = [rearrange(x, "b s ... -> (b s) ...") for x in [q, k, v]]
|
99 |
+
cu_seqlens_q = torch.arange(
|
100 |
+
0,
|
101 |
+
(batch_size + 1) * seqlen_q,
|
102 |
+
step=seqlen_q,
|
103 |
+
dtype=torch.int32,
|
104 |
+
device=q.device,
|
105 |
+
)
|
106 |
+
|
107 |
+
if self.training:
|
108 |
+
assert seqlen_k == seqlen_q
|
109 |
+
|
110 |
+
is_causal = self.causal
|
111 |
+
cu_seqlens_k = cu_seqlens_q
|
112 |
+
else:
|
113 |
+
is_causal = seqlen_q == seqlen_k
|
114 |
+
cu_seqlens_k = torch.arange(
|
115 |
+
0,
|
116 |
+
(batch_size + 1) * seqlen_k,
|
117 |
+
step=seqlen_k,
|
118 |
+
dtype=torch.int32,
|
119 |
+
device=q.device,
|
120 |
+
)
|
121 |
+
self.dropout_p = 0
|
122 |
+
output = flash_attn_unpadded_func(
|
123 |
+
q,
|
124 |
+
k,
|
125 |
+
v,
|
126 |
+
cu_seqlens_q,
|
127 |
+
cu_seqlens_k,
|
128 |
+
seqlen_q,
|
129 |
+
seqlen_k,
|
130 |
+
self.dropout_p,
|
131 |
+
softmax_scale=self.softmax_scale,
|
132 |
+
causal=is_causal,
|
133 |
+
)
|
134 |
+
|
135 |
+
output = rearrange(output, "(b s) ... -> b s ...", b=batch_size)
|
136 |
+
return output
|
137 |
+
|
138 |
+
|
139 |
+
class QWenAttention(nn.Module):
|
140 |
+
def __init__(self, config, layer_number=None):
|
141 |
+
super().__init__()
|
142 |
+
|
143 |
+
max_positions = config.max_position_embeddings
|
144 |
+
self.register_buffer(
|
145 |
+
"bias",
|
146 |
+
torch.tril(
|
147 |
+
torch.ones((max_positions, max_positions), dtype=torch.bool)
|
148 |
+
).view(1, 1, max_positions, max_positions),
|
149 |
+
persistent=False,
|
150 |
+
)
|
151 |
+
self.register_buffer("masked_bias", torch.tensor(-1e4), persistent=False)
|
152 |
+
self.layer_number = max(1, layer_number)
|
153 |
+
self.params_dtype = config.params_dtype
|
154 |
+
self.seq_length = config.seq_length
|
155 |
+
|
156 |
+
self.hidden_size = config.hidden_size
|
157 |
+
self.split_size = config.hidden_size
|
158 |
+
self.num_heads = config.num_attention_heads
|
159 |
+
self.head_dim = self.hidden_size // self.num_heads
|
160 |
+
|
161 |
+
self.use_flash_attn = config.use_flash_attn
|
162 |
+
self.scale_attn_weights = True
|
163 |
+
|
164 |
+
self.layer_idx = None
|
165 |
+
|
166 |
+
self.projection_size = config.kv_channels * config.num_attention_heads
|
167 |
+
|
168 |
+
assert self.projection_size % config.num_attention_heads == 0
|
169 |
+
self.hidden_size_per_attention_head = (
|
170 |
+
self.projection_size // config.num_attention_heads
|
171 |
+
)
|
172 |
+
|
173 |
+
self.c_attn = nn.Linear(config.hidden_size, 3 * self.projection_size)
|
174 |
+
|
175 |
+
self.c_proj = nn.Linear(
|
176 |
+
config.hidden_size, self.projection_size, bias=not config.no_bias
|
177 |
+
)
|
178 |
+
|
179 |
+
if self.use_flash_attn:
|
180 |
+
self.core_attention_flash = FlashSelfAttention(
|
181 |
+
causal=True, attention_dropout=config.attn_pdrop
|
182 |
+
)
|
183 |
+
|
184 |
+
self.bf16 = config.bf16
|
185 |
+
|
186 |
+
if config.rotary_pct == 1.0:
|
187 |
+
self.rotary_ndims = None
|
188 |
+
else:
|
189 |
+
assert config.rotary_pct < 1
|
190 |
+
self.rotary_ndims = int(
|
191 |
+
self.hidden_size_per_attention_head * config.rotary_pct
|
192 |
+
)
|
193 |
+
dim = (
|
194 |
+
self.rotary_ndims
|
195 |
+
if self.rotary_ndims is not None
|
196 |
+
else self.hidden_size_per_attention_head
|
197 |
+
)
|
198 |
+
self.rotary_emb = RotaryEmbedding(
|
199 |
+
dim, base=config.rotary_emb_base
|
200 |
+
)
|
201 |
+
|
202 |
+
self.use_dynamic_ntk = config.use_dynamic_ntk
|
203 |
+
self.use_logn_attn = config.use_logn_attn
|
204 |
+
|
205 |
+
logn_list = [math.log(i, self.seq_length) if i > self.seq_length else 1 for i in range(1, 32768)]
|
206 |
+
self.logn_tensor = torch.Tensor(logn_list)[None, :, None, None]
|
207 |
+
self._ntk_cached = 1.0
|
208 |
+
|
209 |
+
self.attn_dropout = nn.Dropout(config.attn_pdrop)
|
210 |
+
|
211 |
+
def _attn(self, query, key, value, attention_mask=None, head_mask=None):
|
212 |
+
attn_weights = torch.matmul(query, key.transpose(-1, -2))
|
213 |
+
|
214 |
+
if self.scale_attn_weights:
|
215 |
+
attn_weights = attn_weights / torch.full(
|
216 |
+
[],
|
217 |
+
value.size(-1) ** 0.5,
|
218 |
+
dtype=attn_weights.dtype,
|
219 |
+
device=attn_weights.device,
|
220 |
+
)
|
221 |
+
|
222 |
+
query_length, key_length = query.size(-2), key.size(-2)
|
223 |
+
causal_mask = self.bias[
|
224 |
+
:, :, key_length - query_length : key_length, :key_length
|
225 |
+
]
|
226 |
+
mask_value = torch.finfo(attn_weights.dtype).min
|
227 |
+
mask_value = torch.full([], mask_value, dtype=attn_weights.dtype).to(
|
228 |
+
attn_weights.device
|
229 |
+
)
|
230 |
+
attn_weights = torch.where(
|
231 |
+
causal_mask, attn_weights.to(attn_weights.dtype), mask_value
|
232 |
+
)
|
233 |
+
|
234 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
|
235 |
+
|
236 |
+
attn_weights = attn_weights.type(value.dtype)
|
237 |
+
attn_weights = self.attn_dropout(attn_weights)
|
238 |
+
|
239 |
+
if head_mask is not None:
|
240 |
+
attn_weights = attn_weights * head_mask
|
241 |
+
|
242 |
+
attn_output = torch.matmul(attn_weights, value)
|
243 |
+
attn_output = attn_output.transpose(1, 2)
|
244 |
+
|
245 |
+
return attn_output, attn_weights
|
246 |
+
|
247 |
+
def _upcast_and_reordered_attn(
|
248 |
+
self, query, key, value, attention_mask=None, head_mask=None
|
249 |
+
):
|
250 |
+
bsz, num_heads, q_seq_len, dk = query.size()
|
251 |
+
_, _, k_seq_len, _ = key.size()
|
252 |
+
|
253 |
+
attn_weights = torch.empty(
|
254 |
+
bsz * num_heads,
|
255 |
+
q_seq_len,
|
256 |
+
k_seq_len,
|
257 |
+
dtype=torch.float32,
|
258 |
+
device=query.device,
|
259 |
+
)
|
260 |
+
|
261 |
+
scale_factor = 1.0
|
262 |
+
if self.scale_attn_weights:
|
263 |
+
scale_factor /= float(value.size(-1)) ** 0.5
|
264 |
+
|
265 |
+
with autocast(enabled=False):
|
266 |
+
q, k = query.reshape(-1, q_seq_len, dk), key.transpose(-1, -2).reshape(
|
267 |
+
-1, dk, k_seq_len
|
268 |
+
)
|
269 |
+
attn_weights = torch.baddbmm(
|
270 |
+
attn_weights, q.float(), k.float(), beta=0, alpha=scale_factor
|
271 |
+
)
|
272 |
+
attn_weights = attn_weights.reshape(bsz, num_heads, q_seq_len, k_seq_len)
|
273 |
+
|
274 |
+
query_length, key_length = query.size(-2), key.size(-2)
|
275 |
+
causal_mask = self.bias[
|
276 |
+
:, :, key_length - query_length : key_length, :key_length
|
277 |
+
]
|
278 |
+
mask_value = torch.finfo(attn_weights.dtype).min
|
279 |
+
mask_value = torch.tensor(mask_value, dtype=attn_weights.dtype).to(
|
280 |
+
attn_weights.device
|
281 |
+
)
|
282 |
+
attn_weights = torch.where(causal_mask, attn_weights, mask_value)
|
283 |
+
|
284 |
+
if attention_mask is not None:
|
285 |
+
attn_weights = attn_weights + attention_mask
|
286 |
+
|
287 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
|
288 |
+
|
289 |
+
if attn_weights.dtype != torch.float32:
|
290 |
+
raise RuntimeError(
|
291 |
+
"Error with upcasting, attn_weights does not have dtype torch.float32"
|
292 |
+
)
|
293 |
+
attn_weights = attn_weights.type(value.dtype)
|
294 |
+
attn_weights = self.attn_dropout(attn_weights)
|
295 |
+
|
296 |
+
if head_mask is not None:
|
297 |
+
attn_weights = attn_weights * head_mask
|
298 |
+
|
299 |
+
attn_output = torch.matmul(attn_weights, value)
|
300 |
+
|
301 |
+
return attn_output, attn_weights
|
302 |
+
|
303 |
+
def _split_heads(self, tensor, num_heads, attn_head_size):
|
304 |
+
new_shape = tensor.size()[:-1] + (num_heads, attn_head_size)
|
305 |
+
tensor = tensor.view(new_shape)
|
306 |
+
return tensor
|
307 |
+
|
308 |
+
def _merge_heads(self, tensor, num_heads, attn_head_size):
|
309 |
+
tensor = tensor.contiguous()
|
310 |
+
new_shape = tensor.size()[:-2] + (num_heads * attn_head_size,)
|
311 |
+
return tensor.view(new_shape)
|
312 |
+
|
313 |
+
def forward(
|
314 |
+
self,
|
315 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]],
|
316 |
+
layer_past: Optional[Tuple[torch.Tensor]] = None,
|
317 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
318 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
319 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
320 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
321 |
+
output_attentions: Optional[bool] = False,
|
322 |
+
use_cache: Optional[bool] = False,
|
323 |
+
):
|
324 |
+
|
325 |
+
mixed_x_layer = self.c_attn(hidden_states)
|
326 |
+
query, key, value = mixed_x_layer.split(self.split_size, dim=2)
|
327 |
+
|
328 |
+
query = self._split_heads(query, self.num_heads, self.head_dim)
|
329 |
+
key = self._split_heads(key, self.num_heads, self.head_dim)
|
330 |
+
value = self._split_heads(value, self.num_heads, self.head_dim)
|
331 |
+
|
332 |
+
kv_seq_len = hidden_states.size()[1]
|
333 |
+
if layer_past:
|
334 |
+
# layer past[0] shape: bs * seq_len * head_num * dim
|
335 |
+
kv_seq_len += layer_past[0].shape[1]
|
336 |
+
if self.use_dynamic_ntk and kv_seq_len == hidden_states.size()[1]:
|
337 |
+
context_value = math.log(kv_seq_len / self.seq_length, 2) + 1
|
338 |
+
ntk_alpha = 2 ** math.ceil(context_value) - 1
|
339 |
+
ntk_alpha = max(ntk_alpha, 1)
|
340 |
+
self._ntk_cached = ntk_alpha
|
341 |
+
else:
|
342 |
+
ntk_alpha = self._ntk_cached
|
343 |
+
rotary_pos_emb = self.rotary_emb(kv_seq_len, ntk_alpha=ntk_alpha).to(hidden_states.device)
|
344 |
+
|
345 |
+
if rotary_pos_emb is not None:
|
346 |
+
if isinstance(rotary_pos_emb, tuple):
|
347 |
+
rotary_pos_emb = rotary_pos_emb
|
348 |
+
else:
|
349 |
+
rotary_pos_emb = (rotary_pos_emb,) * 2
|
350 |
+
|
351 |
+
if rotary_pos_emb is not None:
|
352 |
+
q_pos_emb, k_pos_emb = rotary_pos_emb
|
353 |
+
# Slice the pos emb for current inference
|
354 |
+
cur_len = query.shape[1]
|
355 |
+
q_pos_emb = q_pos_emb[:, -cur_len:, :, :]
|
356 |
+
k_pos_emb = k_pos_emb[:, -cur_len:, :, :]
|
357 |
+
query = apply_rotary_pos_emb(query, q_pos_emb)
|
358 |
+
key = apply_rotary_pos_emb(key, k_pos_emb)
|
359 |
+
|
360 |
+
if layer_past is not None:
|
361 |
+
past_key, past_value = layer_past[0], layer_past[1]
|
362 |
+
key = torch.cat((past_key, key), dim=1)
|
363 |
+
value = torch.cat((past_value, value), dim=1)
|
364 |
+
|
365 |
+
if use_cache:
|
366 |
+
present = (key, value)
|
367 |
+
else:
|
368 |
+
present = None
|
369 |
+
|
370 |
+
if self.use_logn_attn:
|
371 |
+
if self.logn_tensor.device != query.device:
|
372 |
+
self.logn_tensor = self.logn_tensor.to(query.device).type_as(query)
|
373 |
+
seq_start = key.size(0) - query.size(0)
|
374 |
+
seq_end = key.size(0)
|
375 |
+
logn_tensor = self.logn_tensor[:, seq_start:seq_end, :, :]
|
376 |
+
query = query * logn_tensor.expand_as(query)
|
377 |
+
|
378 |
+
if self.use_flash_attn:
|
379 |
+
q, k, v = query, key, value
|
380 |
+
context_layer = self.core_attention_flash(q, k, v)
|
381 |
+
|
382 |
+
context_layer = rearrange(
|
383 |
+
context_layer, "b s h d -> b s (h d)"
|
384 |
+
).contiguous()
|
385 |
+
else:
|
386 |
+
query = query.permute(0, 2, 1, 3)
|
387 |
+
key = key.permute(0, 2, 1, 3)
|
388 |
+
value = value.permute(0, 2, 1, 3)
|
389 |
+
attn_output, attn_weight = self._attn(
|
390 |
+
query, key, value, attention_mask, head_mask
|
391 |
+
)
|
392 |
+
context_layer = self._merge_heads(
|
393 |
+
attn_output, self.num_heads, self.head_dim
|
394 |
+
)
|
395 |
+
|
396 |
+
attn_output = self.c_proj(context_layer)
|
397 |
+
outputs = (attn_output, present)
|
398 |
+
if output_attentions:
|
399 |
+
if self.use_flash_attn:
|
400 |
+
raise ValueError("Cannot output attentions while using flash-attn")
|
401 |
+
else:
|
402 |
+
outputs += (attn_weight,)
|
403 |
+
|
404 |
+
return outputs
|
405 |
+
|
406 |
+
|
407 |
+
class QWenMLP(nn.Module):
|
408 |
+
def __init__(self, config):
|
409 |
+
super().__init__()
|
410 |
+
self.w1 = nn.Linear(
|
411 |
+
config.hidden_size, config.ffn_hidden_size // 2, bias=not config.no_bias
|
412 |
+
)
|
413 |
+
self.w2 = nn.Linear(
|
414 |
+
config.hidden_size, config.ffn_hidden_size // 2, bias=not config.no_bias
|
415 |
+
)
|
416 |
+
ff_dim_in = config.ffn_hidden_size // 2
|
417 |
+
self.c_proj = nn.Linear(ff_dim_in, config.hidden_size, bias=not config.no_bias)
|
418 |
+
|
419 |
+
def forward(self, hidden_states):
|
420 |
+
a1 = self.w1(hidden_states)
|
421 |
+
a2 = self.w2(hidden_states)
|
422 |
+
intermediate_parallel = a1 * F.silu(a2)
|
423 |
+
output = self.c_proj(intermediate_parallel)
|
424 |
+
return output
|
425 |
+
|
426 |
+
|
427 |
+
class QWenBlock(nn.Module):
|
428 |
+
def __init__(self, config, layer_idx=None, num_expert=1):
|
429 |
+
super().__init__()
|
430 |
+
self.num_expert = num_expert
|
431 |
+
self.layer_number = layer_idx
|
432 |
+
self.apply_residual_connection_post_layernorm = (
|
433 |
+
config.apply_residual_connection_post_layernorm
|
434 |
+
)
|
435 |
+
hidden_size = config.hidden_size
|
436 |
+
self.apply_residual_connection_post_layernorm = (
|
437 |
+
config.apply_residual_connection_post_layernorm
|
438 |
+
)
|
439 |
+
self.bf16 = config.bf16
|
440 |
+
|
441 |
+
self.ln_1 = RMSNorm(
|
442 |
+
hidden_size,
|
443 |
+
eps=config.layer_norm_epsilon,
|
444 |
+
)
|
445 |
+
self.attn = QWenAttention(config, layer_number=layer_idx)
|
446 |
+
self.ln_2 = RMSNorm(
|
447 |
+
hidden_size,
|
448 |
+
eps=config.layer_norm_epsilon,
|
449 |
+
)
|
450 |
+
|
451 |
+
self.mlp = QWenMLP(config)
|
452 |
+
|
453 |
+
def forward(
|
454 |
+
self,
|
455 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]],
|
456 |
+
layer_past: Optional[Tuple[torch.Tensor]] = None,
|
457 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
458 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
459 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
460 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
461 |
+
use_cache: Optional[bool] = False,
|
462 |
+
output_attentions: Optional[bool] = False,
|
463 |
+
):
|
464 |
+
layernorm_output = self.ln_1(hidden_states)
|
465 |
+
|
466 |
+
attn_outputs = self.attn(
|
467 |
+
layernorm_output,
|
468 |
+
layer_past=layer_past,
|
469 |
+
attention_mask=attention_mask,
|
470 |
+
head_mask=head_mask,
|
471 |
+
use_cache=use_cache,
|
472 |
+
output_attentions=output_attentions,
|
473 |
+
)
|
474 |
+
attn_output = attn_outputs[0]
|
475 |
+
|
476 |
+
outputs = attn_outputs[1:]
|
477 |
+
|
478 |
+
if self.apply_residual_connection_post_layernorm:
|
479 |
+
residual = layernorm_output
|
480 |
+
else:
|
481 |
+
residual = hidden_states
|
482 |
+
layernorm_input = attn_output + residual
|
483 |
+
|
484 |
+
layernorm_output = self.ln_2(layernorm_input)
|
485 |
+
|
486 |
+
if self.apply_residual_connection_post_layernorm:
|
487 |
+
residual = layernorm_output
|
488 |
+
else:
|
489 |
+
residual = layernorm_input
|
490 |
+
|
491 |
+
mlp_output = self.mlp(layernorm_output)
|
492 |
+
hidden_states = residual + mlp_output
|
493 |
+
|
494 |
+
if use_cache:
|
495 |
+
outputs = (hidden_states,) + outputs
|
496 |
+
else:
|
497 |
+
outputs = (hidden_states,) + outputs[1:]
|
498 |
+
|
499 |
+
return outputs
|
500 |
+
|
501 |
+
|
502 |
+
class QWenPreTrainedModel(PreTrainedModel):
|
503 |
+
config_class = QWenConfig
|
504 |
+
base_model_prefix = "transformer"
|
505 |
+
is_parallelizable = False
|
506 |
+
supports_gradient_checkpointing = True
|
507 |
+
_no_split_modules = ["QWenBlock"]
|
508 |
+
|
509 |
+
def __init__(self, *inputs, **kwargs):
|
510 |
+
super().__init__(*inputs, **kwargs)
|
511 |
+
|
512 |
+
def _init_weights(self, module):
|
513 |
+
"""Initialize the weights."""
|
514 |
+
if isinstance(module, nn.Linear):
|
515 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
516 |
+
if module.bias is not None:
|
517 |
+
module.bias.data.zero_()
|
518 |
+
elif isinstance(module, nn.Embedding):
|
519 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
520 |
+
if module.padding_idx is not None:
|
521 |
+
module.weight.data[module.padding_idx].zero_()
|
522 |
+
elif isinstance(module, RMSNorm):
|
523 |
+
module.weight.data.fill_(1.0)
|
524 |
+
|
525 |
+
for name, p in module.named_parameters():
|
526 |
+
if name == "c_proj.weight":
|
527 |
+
p.data.normal_(
|
528 |
+
mean=0.0,
|
529 |
+
std=(
|
530 |
+
self.config.initializer_range
|
531 |
+
/ math.sqrt(2 * self.config.n_layer)
|
532 |
+
),
|
533 |
+
)
|
534 |
+
|
535 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
536 |
+
if isinstance(module, QWenModel):
|
537 |
+
module.gradient_checkpointing = value
|
538 |
+
|
539 |
+
|
540 |
+
class QWenModel(QWenPreTrainedModel):
|
541 |
+
_keys_to_ignore_on_load_missing = ["attn.masked_bias"]
|
542 |
+
|
543 |
+
def __init__(self, config):
|
544 |
+
super().__init__(config)
|
545 |
+
self.vocab_size = config.padded_vocab_size
|
546 |
+
self.num_hidden_layers = config.num_hidden_layers
|
547 |
+
self.embed_dim = config.hidden_size
|
548 |
+
|
549 |
+
max_sequence_length = config.max_position_embeddings
|
550 |
+
self.position_embedding_type = config.pos_emb
|
551 |
+
self.gradient_checkpointing = False
|
552 |
+
|
553 |
+
if self.position_embedding_type == "learned":
|
554 |
+
self.wpe = nn.Embedding(max_sequence_length, self.embed_dim)
|
555 |
+
self.init_method(self.position_embeddings.weight)
|
556 |
+
self._position_embeddings_key = "position_embeddings"
|
557 |
+
self.init_method(self.position_embeddings.weight)
|
558 |
+
else:
|
559 |
+
self.wpe = None
|
560 |
+
self._position_embeddings_key = ""
|
561 |
+
|
562 |
+
self.wte = nn.Embedding(self.vocab_size, self.embed_dim)
|
563 |
+
|
564 |
+
self.drop = nn.Dropout(config.embd_pdrop)
|
565 |
+
self.h = nn.ModuleList(
|
566 |
+
[
|
567 |
+
QWenBlock(
|
568 |
+
config,
|
569 |
+
layer_idx=i,
|
570 |
+
)
|
571 |
+
for i in range(config.num_hidden_layers)
|
572 |
+
]
|
573 |
+
)
|
574 |
+
self.ln_f = RMSNorm(
|
575 |
+
self.embed_dim,
|
576 |
+
eps=config.layer_norm_epsilon,
|
577 |
+
)
|
578 |
+
|
579 |
+
self.post_init()
|
580 |
+
|
581 |
+
def get_input_embeddings(self):
|
582 |
+
return self.wte
|
583 |
+
|
584 |
+
def set_input_embeddings(self, new_embeddings):
|
585 |
+
self.wte = new_embeddings
|
586 |
+
|
587 |
+
def forward(
|
588 |
+
self,
|
589 |
+
input_ids: Optional[torch.LongTensor] = None,
|
590 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
591 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
592 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
593 |
+
position_ids: Optional[torch.LongTensor] = None,
|
594 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
595 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
596 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
597 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
598 |
+
use_cache: Optional[bool] = None,
|
599 |
+
output_attentions: Optional[bool] = None,
|
600 |
+
output_hidden_states: Optional[bool] = None,
|
601 |
+
return_dict: Optional[bool] = None,
|
602 |
+
):
|
603 |
+
output_attentions = (
|
604 |
+
output_attentions
|
605 |
+
if output_attentions is not None
|
606 |
+
else self.config.output_attentions
|
607 |
+
)
|
608 |
+
output_hidden_states = (
|
609 |
+
output_hidden_states
|
610 |
+
if output_hidden_states is not None
|
611 |
+
else self.config.output_hidden_states
|
612 |
+
)
|
613 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
614 |
+
return_dict = (
|
615 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
616 |
+
)
|
617 |
+
|
618 |
+
if input_ids is not None and inputs_embeds is not None:
|
619 |
+
raise ValueError(
|
620 |
+
"You cannot specify both input_ids and inputs_embeds at the same time"
|
621 |
+
)
|
622 |
+
elif input_ids is not None:
|
623 |
+
input_shape = input_ids.size()
|
624 |
+
input_ids = input_ids.view(-1, input_shape[-1])
|
625 |
+
batch_size = input_ids.shape[0]
|
626 |
+
elif inputs_embeds is not None:
|
627 |
+
input_shape = inputs_embeds.size()[:-1]
|
628 |
+
batch_size = inputs_embeds.shape[0]
|
629 |
+
else:
|
630 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
631 |
+
|
632 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
633 |
+
|
634 |
+
if token_type_ids is not None:
|
635 |
+
token_type_ids = token_type_ids.view(-1, input_shape[-1])
|
636 |
+
if position_ids is not None:
|
637 |
+
position_ids = position_ids.view(-1, input_shape[-1])
|
638 |
+
|
639 |
+
if past_key_values is None:
|
640 |
+
past_length = 0
|
641 |
+
past_key_values = tuple([None] * len(self.h))
|
642 |
+
else:
|
643 |
+
past_length = past_key_values[0][0].size(-2)
|
644 |
+
|
645 |
+
if position_ids is None:
|
646 |
+
position_ids = torch.arange(
|
647 |
+
past_length,
|
648 |
+
input_shape[-1] + past_length,
|
649 |
+
dtype=torch.long,
|
650 |
+
device=device,
|
651 |
+
)
|
652 |
+
position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1])
|
653 |
+
|
654 |
+
if attention_mask is not None:
|
655 |
+
if batch_size <= 0:
|
656 |
+
raise ValueError("batch_size has to be defined and > 0")
|
657 |
+
attention_mask = attention_mask.view(batch_size, -1)
|
658 |
+
attention_mask = attention_mask[:, None, None, :]
|
659 |
+
attention_mask = attention_mask.to(dtype=self.dtype)
|
660 |
+
attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min
|
661 |
+
|
662 |
+
encoder_attention_mask = None
|
663 |
+
head_mask = self.get_head_mask(head_mask, self.config.n_layer)
|
664 |
+
|
665 |
+
if inputs_embeds is None:
|
666 |
+
inputs_embeds = self.wte(input_ids)
|
667 |
+
hidden_states = inputs_embeds
|
668 |
+
if self.wpe is not None:
|
669 |
+
position_embeds = self.wpe(position_ids)
|
670 |
+
hidden_states = hidden_states + position_embeds
|
671 |
+
|
672 |
+
hidden_states = self.drop(hidden_states)
|
673 |
+
output_shape = input_shape + (hidden_states.size(-1),)
|
674 |
+
|
675 |
+
if self.gradient_checkpointing and self.training:
|
676 |
+
if use_cache:
|
677 |
+
logger.warning_once(
|
678 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
679 |
+
)
|
680 |
+
use_cache = False
|
681 |
+
|
682 |
+
presents = () if use_cache else None
|
683 |
+
all_self_attentions = () if output_attentions else None
|
684 |
+
all_hidden_states = () if output_hidden_states else None
|
685 |
+
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
|
686 |
+
|
687 |
+
if output_hidden_states:
|
688 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
689 |
+
|
690 |
+
if self.gradient_checkpointing and self.training:
|
691 |
+
|
692 |
+
def create_custom_forward(module):
|
693 |
+
def custom_forward(*inputs):
|
694 |
+
# None for past_key_value
|
695 |
+
return module(*inputs, use_cache, output_attentions)
|
696 |
+
|
697 |
+
return custom_forward
|
698 |
+
|
699 |
+
outputs = torch.utils.checkpoint.checkpoint(
|
700 |
+
create_custom_forward(block),
|
701 |
+
hidden_states,
|
702 |
+
None,
|
703 |
+
attention_mask,
|
704 |
+
head_mask[i],
|
705 |
+
encoder_hidden_states,
|
706 |
+
encoder_attention_mask,
|
707 |
+
)
|
708 |
+
else:
|
709 |
+
outputs = block(
|
710 |
+
hidden_states,
|
711 |
+
layer_past=layer_past,
|
712 |
+
attention_mask=attention_mask,
|
713 |
+
head_mask=head_mask[i],
|
714 |
+
encoder_hidden_states=encoder_hidden_states,
|
715 |
+
encoder_attention_mask=encoder_attention_mask,
|
716 |
+
use_cache=use_cache,
|
717 |
+
output_attentions=output_attentions,
|
718 |
+
)
|
719 |
+
|
720 |
+
hidden_states = outputs[0]
|
721 |
+
if use_cache is True:
|
722 |
+
presents = presents + (outputs[2 if output_attentions else 1],)
|
723 |
+
|
724 |
+
if output_attentions:
|
725 |
+
all_self_attentions = all_self_attentions + (outputs[1],)
|
726 |
+
|
727 |
+
hidden_states = self.ln_f(hidden_states)
|
728 |
+
hidden_states = hidden_states.view(output_shape)
|
729 |
+
|
730 |
+
if not return_dict:
|
731 |
+
return tuple(
|
732 |
+
v for v in [hidden_states, presents, all_hidden_states] if v is not None
|
733 |
+
)
|
734 |
+
|
735 |
+
return BaseModelOutputWithPast(
|
736 |
+
last_hidden_state=hidden_states,
|
737 |
+
past_key_values=presents,
|
738 |
+
hidden_states=all_hidden_states,
|
739 |
+
attentions=all_self_attentions,
|
740 |
+
)
|
741 |
+
|
742 |
+
|
743 |
+
class QWenLMHeadModel(QWenPreTrainedModel):
|
744 |
+
_keys_to_ignore_on_load_missing = [r"h\.\d+\.attn\.rotary_emb\.inv_freq"]
|
745 |
+
_keys_to_ignore_on_load_unexpected = [r"h\.\d+\.attn\.masked_bias"]
|
746 |
+
|
747 |
+
def __init__(self, config):
|
748 |
+
super().__init__(config)
|
749 |
+
self.transformer = QWenModel(config)
|
750 |
+
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
|
751 |
+
self.post_init()
|
752 |
+
|
753 |
+
def get_output_embeddings(self):
|
754 |
+
return self.lm_head
|
755 |
+
|
756 |
+
def set_output_embeddings(self, new_embeddings):
|
757 |
+
self.lm_head = new_embeddings
|
758 |
+
|
759 |
+
def prepare_inputs_for_generation(
|
760 |
+
self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs
|
761 |
+
):
|
762 |
+
token_type_ids = kwargs.get("token_type_ids", None)
|
763 |
+
if past_key_values:
|
764 |
+
input_ids = input_ids[:, -1].unsqueeze(-1)
|
765 |
+
if token_type_ids is not None:
|
766 |
+
token_type_ids = token_type_ids[:, -1].unsqueeze(-1)
|
767 |
+
|
768 |
+
attention_mask = kwargs.get("attention_mask", None)
|
769 |
+
position_ids = kwargs.get("position_ids", None)
|
770 |
+
|
771 |
+
if attention_mask is not None and position_ids is None:
|
772 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
773 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
774 |
+
if past_key_values:
|
775 |
+
position_ids = position_ids[:, -1].unsqueeze(-1)
|
776 |
+
else:
|
777 |
+
position_ids = None
|
778 |
+
|
779 |
+
if inputs_embeds is not None and past_key_values is None:
|
780 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
781 |
+
else:
|
782 |
+
model_inputs = {"input_ids": input_ids}
|
783 |
+
|
784 |
+
model_inputs.update(
|
785 |
+
{
|
786 |
+
"past_key_values": past_key_values,
|
787 |
+
"use_cache": kwargs.get("use_cache"),
|
788 |
+
"position_ids": position_ids,
|
789 |
+
"attention_mask": attention_mask,
|
790 |
+
"token_type_ids": token_type_ids,
|
791 |
+
}
|
792 |
+
)
|
793 |
+
return model_inputs
|
794 |
+
|
795 |
+
def forward(
|
796 |
+
self,
|
797 |
+
input_ids: Optional[torch.LongTensor] = None,
|
798 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
799 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
800 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
801 |
+
position_ids: Optional[torch.LongTensor] = None,
|
802 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
803 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
804 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
805 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
806 |
+
labels: Optional[torch.LongTensor] = None,
|
807 |
+
use_cache: Optional[bool] = None,
|
808 |
+
output_attentions: Optional[bool] = None,
|
809 |
+
output_hidden_states: Optional[bool] = None,
|
810 |
+
return_dict: Optional[bool] = None,
|
811 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
812 |
+
|
813 |
+
return_dict = (
|
814 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
815 |
+
)
|
816 |
+
|
817 |
+
transformer_outputs = self.transformer(
|
818 |
+
input_ids,
|
819 |
+
past_key_values=past_key_values,
|
820 |
+
attention_mask=attention_mask,
|
821 |
+
token_type_ids=token_type_ids,
|
822 |
+
position_ids=position_ids,
|
823 |
+
head_mask=head_mask,
|
824 |
+
inputs_embeds=inputs_embeds,
|
825 |
+
encoder_hidden_states=encoder_hidden_states,
|
826 |
+
encoder_attention_mask=encoder_attention_mask,
|
827 |
+
use_cache=use_cache,
|
828 |
+
output_attentions=output_attentions,
|
829 |
+
output_hidden_states=output_hidden_states,
|
830 |
+
return_dict=return_dict,
|
831 |
+
)
|
832 |
+
hidden_states = transformer_outputs[0]
|
833 |
+
|
834 |
+
lm_logits = self.lm_head(hidden_states)
|
835 |
+
|
836 |
+
loss = None
|
837 |
+
if labels is not None:
|
838 |
+
labels = labels.to(lm_logits.device)
|
839 |
+
shift_logits = lm_logits[..., :-1, :].contiguous()
|
840 |
+
shift_labels = labels[..., 1:].contiguous()
|
841 |
+
loss_fct = CrossEntropyLoss()
|
842 |
+
loss = loss_fct(
|
843 |
+
shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)
|
844 |
+
)
|
845 |
+
|
846 |
+
if not return_dict:
|
847 |
+
output = (lm_logits,) + transformer_outputs[1:]
|
848 |
+
return ((loss,) + output) if loss is not None else output
|
849 |
+
|
850 |
+
return CausalLMOutputWithPast(
|
851 |
+
loss=loss,
|
852 |
+
logits=lm_logits,
|
853 |
+
past_key_values=transformer_outputs.past_key_values,
|
854 |
+
hidden_states=transformer_outputs.hidden_states,
|
855 |
+
attentions=transformer_outputs.attentions,
|
856 |
+
)
|
857 |
+
|
858 |
+
@staticmethod
|
859 |
+
def _reorder_cache(
|
860 |
+
past_key_values: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor
|
861 |
+
) -> Tuple[Tuple[torch.Tensor]]:
|
862 |
+
|
863 |
+
return tuple(
|
864 |
+
tuple(
|
865 |
+
past_state.index_select(0, beam_idx.to(past_state.device))
|
866 |
+
for past_state in layer_past
|
867 |
+
)
|
868 |
+
for layer_past in past_key_values
|
869 |
+
)
|
870 |
+
|
871 |
+
def chat(
|
872 |
+
self,
|
873 |
+
tokenizer: PreTrainedTokenizer,
|
874 |
+
query: str,
|
875 |
+
history: Optional[HistoryType],
|
876 |
+
system: str = "You are a helpful assistant.",
|
877 |
+
append_history: bool = True,
|
878 |
+
) -> Tuple[str, HistoryType]:
|
879 |
+
|
880 |
+
if history is None:
|
881 |
+
history = []
|
882 |
+
|
883 |
+
raw_text, context_tokens = make_context(
|
884 |
+
tokenizer,
|
885 |
+
query,
|
886 |
+
history=history,
|
887 |
+
system=system,
|
888 |
+
max_window_size=6144,
|
889 |
+
chat_format=self.generation_config.chat_format,
|
890 |
+
)
|
891 |
+
|
892 |
+
stop_words_ids = get_stop_words_ids(
|
893 |
+
self.generation_config.chat_format, tokenizer
|
894 |
+
)
|
895 |
+
input_ids = torch.tensor([context_tokens]).to(self.device)
|
896 |
+
|
897 |
+
outputs = self.generate(
|
898 |
+
input_ids,
|
899 |
+
stop_words_ids=stop_words_ids,
|
900 |
+
return_dict_in_generate=False,
|
901 |
+
)
|
902 |
+
|
903 |
+
response = decode_tokens(
|
904 |
+
outputs[0],
|
905 |
+
tokenizer,
|
906 |
+
raw_text_len=len(raw_text),
|
907 |
+
context_length=len(context_tokens),
|
908 |
+
chat_format=self.generation_config.chat_format,
|
909 |
+
verbose=False,
|
910 |
+
)
|
911 |
+
|
912 |
+
if append_history:
|
913 |
+
history.append((query, response))
|
914 |
+
|
915 |
+
return response, history
|
916 |
+
|
917 |
+
def generate(
|
918 |
+
self,
|
919 |
+
inputs: Optional[torch.Tensor] = None,
|
920 |
+
generation_config: Optional[GenerationConfig] = None,
|
921 |
+
logits_processor: Optional[LogitsProcessorList] = None,
|
922 |
+
stopping_criteria: Optional[StoppingCriteriaList] = None,
|
923 |
+
prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor], List[int]]] = None,
|
924 |
+
synced_gpus: Optional[bool] = None,
|
925 |
+
streamer: Optional["BaseStreamer"] = None,
|
926 |
+
**kwargs,
|
927 |
+
) -> Union[GenerateOutput, torch.LongTensor]:
|
928 |
+
# Process stop_words_ids.
|
929 |
+
stop_words_ids = kwargs.pop('stop_words_ids', None)
|
930 |
+
if stop_words_ids is None and generation_config is not None:
|
931 |
+
stop_words_ids = getattr(generation_config, 'stop_words_ids', None)
|
932 |
+
if stop_words_ids is None:
|
933 |
+
stop_words_ids = getattr(self.generation_config, 'stop_words_ids', None)
|
934 |
+
|
935 |
+
if stop_words_ids is not None:
|
936 |
+
stop_words_logits_processor = StopWordsLogitsProcessor(
|
937 |
+
stop_words_ids=stop_words_ids, eos_token_id=self.generation_config.eos_token_id)
|
938 |
+
if logits_processor is None:
|
939 |
+
logits_processor = LogitsProcessorList([stop_words_logits_processor])
|
940 |
+
else:
|
941 |
+
logits_processor.append(stop_words_logits_processor)
|
942 |
+
|
943 |
+
return super().generate(
|
944 |
+
inputs,
|
945 |
+
generation_config,
|
946 |
+
logits_processor,
|
947 |
+
stopping_criteria,
|
948 |
+
prefix_allowed_tokens_fn,
|
949 |
+
synced_gpus,
|
950 |
+
streamer,
|
951 |
+
**kwargs,
|
952 |
+
)
|
953 |
+
|
954 |
+
|
955 |
+
class RotaryEmbedding(torch.nn.Module):
|
956 |
+
def __init__(self, dim, base=10000):
|
957 |
+
super().__init__()
|
958 |
+
self.dim = dim
|
959 |
+
self.base = base
|
960 |
+
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float() / dim))
|
961 |
+
self.register_buffer("inv_freq", inv_freq)
|
962 |
+
if importlib.util.find_spec("einops") is None:
|
963 |
+
raise RuntimeError("einops is required for Rotary Embedding")
|
964 |
+
|
965 |
+
self._rotary_pos_emb_cache = None
|
966 |
+
self._seq_len_cached = 0
|
967 |
+
self._ntk_alpha_cached = 1.0
|
968 |
+
|
969 |
+
def update_rotary_pos_emb_cache(self, max_seq_len, offset=0, ntk_alpha=1.0):
|
970 |
+
seqlen = max_seq_len + offset
|
971 |
+
if seqlen > self._seq_len_cached or ntk_alpha != self._ntk_alpha_cached:
|
972 |
+
base = self.base * ntk_alpha ** (self.dim / (self.dim - 2))
|
973 |
+
self.inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2, device=self.inv_freq.device).float() / self.dim))
|
974 |
+
self._seq_len_cached = seqlen
|
975 |
+
self._ntk_alpha_cached = ntk_alpha
|
976 |
+
seq = torch.arange(seqlen, device=self.inv_freq.device)
|
977 |
+
freqs = torch.outer(seq.type_as(self.inv_freq), self.inv_freq)
|
978 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
979 |
+
from einops import rearrange
|
980 |
+
|
981 |
+
self._rotary_pos_emb_cache = rearrange(emb, "n d -> 1 n 1 d")
|
982 |
+
|
983 |
+
def forward(self, max_seq_len, offset=0, ntk_alpha=1.0):
|
984 |
+
self.update_rotary_pos_emb_cache(max_seq_len, offset, ntk_alpha)
|
985 |
+
return self._rotary_pos_emb_cache[:, offset : offset + max_seq_len]
|
986 |
+
|
987 |
+
|
988 |
+
def _rotate_half(x):
|
989 |
+
from einops import rearrange
|
990 |
+
|
991 |
+
x = rearrange(x, "... (j d) -> ... j d", j=2)
|
992 |
+
x1, x2 = x.unbind(dim=-2)
|
993 |
+
return torch.cat((-x2, x1), dim=-1)
|
994 |
+
|
995 |
+
|
996 |
+
def apply_rotary_pos_emb(t, freqs, use_flash_rotary=False):
|
997 |
+
if use_flash_rotary:
|
998 |
+
t_ = t.float()
|
999 |
+
freqs = freqs.squeeze(0).squeeze(1)
|
1000 |
+
cos = freqs[:, : freqs.shape[-1] // 2].cos()
|
1001 |
+
sin = freqs[:, : freqs.shape[-1] // 2].sin()
|
1002 |
+
output = apply_rotary_emb_func(t_, cos, sin).type_as(t)
|
1003 |
+
return output
|
1004 |
+
else:
|
1005 |
+
rot_dim = freqs.shape[-1]
|
1006 |
+
t_, t_pass_ = t[..., :rot_dim], t[..., rot_dim:]
|
1007 |
+
t_ = t_.float()
|
1008 |
+
t_pass_ = t_pass_.float()
|
1009 |
+
t_ = (t_ * freqs.cos()) + (_rotate_half(t_) * freqs.sin())
|
1010 |
+
return torch.cat((t_, t_pass_), dim=-1).type_as(t)
|
1011 |
+
|
1012 |
+
|
1013 |
+
class RMSNorm(torch.nn.Module):
|
1014 |
+
def __init__(self, dim: int, eps: float = 1e-6):
|
1015 |
+
super().__init__()
|
1016 |
+
self.eps = eps
|
1017 |
+
self.weight = nn.Parameter(torch.ones(dim))
|
1018 |
+
|
1019 |
+
def _norm(self, x):
|
1020 |
+
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
|
1021 |
+
|
1022 |
+
def forward(self, x):
|
1023 |
+
if rms_norm is not None:
|
1024 |
+
return rms_norm(x, self.weight, self.eps)
|
1025 |
+
else:
|
1026 |
+
output = self._norm(x.float()).type_as(x)
|
1027 |
+
return output * self.weight
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 15442733145
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7361b298a82b284129276f586dec570b5d41259130d190960321cc0db92d958f
|
3 |
size 15442733145
|
qwen.tiktoken
ADDED
The diff for this file is too large to render.
See raw diff
|
|
qwen_generation_utils.py
ADDED
@@ -0,0 +1,411 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Alibaba Cloud.
|
2 |
+
#
|
3 |
+
# This source code is licensed under the license found in the
|
4 |
+
# LICENSE file in the root directory of this source tree.
|
5 |
+
|
6 |
+
"""Generation support."""
|
7 |
+
|
8 |
+
from typing import Tuple, List, Union, Iterable
|
9 |
+
|
10 |
+
import numpy as np
|
11 |
+
import torch
|
12 |
+
import torch.nn.functional as F
|
13 |
+
from transformers import PreTrainedTokenizer
|
14 |
+
from transformers import logging
|
15 |
+
from transformers.generation import LogitsProcessor
|
16 |
+
|
17 |
+
logger = logging.get_logger(__name__)
|
18 |
+
|
19 |
+
# Types.
|
20 |
+
HistoryType = List[Tuple[str, str]]
|
21 |
+
TokensType = List[int]
|
22 |
+
BatchTokensType = List[List[int]]
|
23 |
+
|
24 |
+
|
25 |
+
def pad_batch(batch: BatchTokensType, pad_id: int, seq_length: int) -> BatchTokensType:
|
26 |
+
for tokens in batch:
|
27 |
+
context_length = len(tokens)
|
28 |
+
if context_length < seq_length:
|
29 |
+
tokens.extend([pad_id] * (seq_length - context_length))
|
30 |
+
return batch
|
31 |
+
|
32 |
+
|
33 |
+
def get_ltor_masks_and_position_ids(
|
34 |
+
data,
|
35 |
+
eod_token,
|
36 |
+
reset_position_ids,
|
37 |
+
reset_attention_mask,
|
38 |
+
eod_mask_loss,
|
39 |
+
):
|
40 |
+
"""Build masks and position id for left to right model."""
|
41 |
+
|
42 |
+
# Extract batch size and sequence length.
|
43 |
+
micro_batch_size, seq_length = data.size()
|
44 |
+
|
45 |
+
# Attention mask (lower triangular).
|
46 |
+
if reset_attention_mask:
|
47 |
+
att_mask_batch = micro_batch_size
|
48 |
+
else:
|
49 |
+
att_mask_batch = 1
|
50 |
+
attention_mask = torch.tril(
|
51 |
+
torch.ones((att_mask_batch, seq_length, seq_length), device=data.device)
|
52 |
+
).view(att_mask_batch, 1, seq_length, seq_length)
|
53 |
+
|
54 |
+
# Loss mask.
|
55 |
+
loss_mask = torch.ones(data.size(), dtype=torch.float, device=data.device)
|
56 |
+
if eod_mask_loss:
|
57 |
+
loss_mask[data == eod_token] = 0.0
|
58 |
+
|
59 |
+
# Position ids.
|
60 |
+
position_ids = torch.arange(seq_length, dtype=torch.long, device=data.device)
|
61 |
+
position_ids = position_ids.unsqueeze(0).expand_as(data)
|
62 |
+
# We need to clone as the ids will be modifed based on batch index.
|
63 |
+
if reset_position_ids:
|
64 |
+
position_ids = position_ids.clone()
|
65 |
+
|
66 |
+
if reset_position_ids or reset_attention_mask:
|
67 |
+
# Loop through the batches:
|
68 |
+
for b in range(micro_batch_size):
|
69 |
+
|
70 |
+
# Find indecies where EOD token is.
|
71 |
+
eod_index = position_ids[b, data[b] == eod_token]
|
72 |
+
# Detach indecies from positions if going to modify positions.
|
73 |
+
if reset_position_ids:
|
74 |
+
eod_index = eod_index.clone()
|
75 |
+
|
76 |
+
# Loop through EOD indecies:
|
77 |
+
prev_index = 0
|
78 |
+
for j in range(eod_index.size()[0]):
|
79 |
+
i = eod_index[j]
|
80 |
+
# Mask attention loss.
|
81 |
+
if reset_attention_mask:
|
82 |
+
attention_mask[b, 0, (i + 1) :, : (i + 1)] = 0
|
83 |
+
# Reset positions.
|
84 |
+
if reset_position_ids:
|
85 |
+
position_ids[b, (i + 1) :] -= i + 1 - prev_index
|
86 |
+
prev_index = i + 1
|
87 |
+
|
88 |
+
# Convert attention mask to binary:
|
89 |
+
attention_mask = attention_mask < 0.5
|
90 |
+
|
91 |
+
return attention_mask, loss_mask, position_ids
|
92 |
+
|
93 |
+
|
94 |
+
def get_batch(context_tokens: torch.LongTensor, eod_id: int):
|
95 |
+
"""Generate batch from context tokens."""
|
96 |
+
# Move to GPU.
|
97 |
+
tokens = context_tokens.contiguous().to(context_tokens.device)
|
98 |
+
# Get the attention mask and postition ids.
|
99 |
+
attention_mask, _, position_ids = get_ltor_masks_and_position_ids(
|
100 |
+
tokens,
|
101 |
+
eod_id,
|
102 |
+
reset_position_ids=False,
|
103 |
+
reset_attention_mask=False,
|
104 |
+
eod_mask_loss=False,
|
105 |
+
)
|
106 |
+
return tokens, attention_mask, position_ids
|
107 |
+
|
108 |
+
|
109 |
+
def get_stop_words_ids(chat_format, tokenizer):
|
110 |
+
if chat_format == "raw":
|
111 |
+
stop_words_ids = [tokenizer.encode("Human:"), [tokenizer.eod_id]]
|
112 |
+
elif chat_format == "chatml":
|
113 |
+
stop_words_ids = [[tokenizer.im_end_id], [tokenizer.im_start_id]]
|
114 |
+
else:
|
115 |
+
raise NotImplementedError(f"Unknown chat format {chat_format!r}")
|
116 |
+
return stop_words_ids
|
117 |
+
|
118 |
+
|
119 |
+
def make_context(
|
120 |
+
tokenizer: PreTrainedTokenizer,
|
121 |
+
query: str,
|
122 |
+
history: List[Tuple[str, str]] = None,
|
123 |
+
system: str = "",
|
124 |
+
max_window_size: int = 6144,
|
125 |
+
chat_format: str = "chatml",
|
126 |
+
):
|
127 |
+
if history is None:
|
128 |
+
history = []
|
129 |
+
|
130 |
+
if chat_format == "chatml":
|
131 |
+
im_start, im_end = "<|im_start|>", "<|im_end|>"
|
132 |
+
im_start_tokens = [tokenizer.im_start_id]
|
133 |
+
im_end_tokens = [tokenizer.im_end_id]
|
134 |
+
nl_tokens = tokenizer.encode("\n")
|
135 |
+
|
136 |
+
def _tokenize_str(role, content):
|
137 |
+
return f"{role}\n{content}", tokenizer.encode(
|
138 |
+
role
|
139 |
+
) + nl_tokens + tokenizer.encode(content)
|
140 |
+
|
141 |
+
system_text, system_tokens_part = _tokenize_str("system", system)
|
142 |
+
system_tokens = im_start_tokens + system_tokens_part + im_end_tokens
|
143 |
+
|
144 |
+
raw_text = ""
|
145 |
+
context_tokens = []
|
146 |
+
|
147 |
+
for turn_query, turn_response in reversed(history):
|
148 |
+
query_text, query_tokens_part = _tokenize_str("user", turn_query)
|
149 |
+
query_tokens = im_start_tokens + query_tokens_part + im_end_tokens
|
150 |
+
response_text, response_tokens_part = _tokenize_str(
|
151 |
+
"assistant", turn_response
|
152 |
+
)
|
153 |
+
response_tokens = im_start_tokens + response_tokens_part + im_end_tokens
|
154 |
+
|
155 |
+
next_context_tokens = nl_tokens + query_tokens + nl_tokens + response_tokens
|
156 |
+
prev_chat = (
|
157 |
+
f"\n{im_start}{query_text}{im_end}\n{im_start}{response_text}{im_end}"
|
158 |
+
)
|
159 |
+
|
160 |
+
current_context_size = (
|
161 |
+
len(system_tokens) + len(next_context_tokens) + len(context_tokens)
|
162 |
+
)
|
163 |
+
if current_context_size < max_window_size:
|
164 |
+
context_tokens = next_context_tokens + context_tokens
|
165 |
+
raw_text = prev_chat + raw_text
|
166 |
+
else:
|
167 |
+
break
|
168 |
+
|
169 |
+
context_tokens = system_tokens + context_tokens
|
170 |
+
raw_text = f"{im_start}{system_text}{im_end}" + raw_text
|
171 |
+
context_tokens += (
|
172 |
+
nl_tokens
|
173 |
+
+ im_start_tokens
|
174 |
+
+ _tokenize_str("user", query)[1]
|
175 |
+
+ im_end_tokens
|
176 |
+
+ nl_tokens
|
177 |
+
+ im_start_tokens
|
178 |
+
+ tokenizer.encode("assistant")
|
179 |
+
+ nl_tokens
|
180 |
+
)
|
181 |
+
raw_text += f"\n{im_start}user\n{query}{im_end}\n{im_start}assistant\n"
|
182 |
+
|
183 |
+
elif chat_format == "raw":
|
184 |
+
raw_text = query
|
185 |
+
context_tokens = tokenizer.encode(raw_text)
|
186 |
+
else:
|
187 |
+
raise NotImplementedError(f"Unknown chat format {chat_format!r}")
|
188 |
+
|
189 |
+
return raw_text, context_tokens
|
190 |
+
|
191 |
+
|
192 |
+
def _decode_default(
|
193 |
+
tokens: List[int],
|
194 |
+
*,
|
195 |
+
stop_words: List[str],
|
196 |
+
eod_words: List[str],
|
197 |
+
tokenizer: PreTrainedTokenizer,
|
198 |
+
raw_text_len: int,
|
199 |
+
verbose: bool = False,
|
200 |
+
return_end_reason: bool = False,
|
201 |
+
):
|
202 |
+
trim_decode_tokens = tokenizer.decode(tokens)[raw_text_len:]
|
203 |
+
if verbose:
|
204 |
+
print("\nRaw Generate: ", trim_decode_tokens)
|
205 |
+
|
206 |
+
end_reason = f"Gen length {len(tokens)}"
|
207 |
+
for stop_word in stop_words:
|
208 |
+
trim_decode_tokens = trim_decode_tokens.replace(stop_word, "").strip()
|
209 |
+
for eod_word in eod_words:
|
210 |
+
if eod_word in trim_decode_tokens:
|
211 |
+
end_reason = f"Gen {eod_word!r}"
|
212 |
+
trim_decode_tokens = trim_decode_tokens.split(eod_word)[0]
|
213 |
+
trim_decode_tokens = trim_decode_tokens.strip()
|
214 |
+
if verbose:
|
215 |
+
print("\nEnd Reason:", end_reason)
|
216 |
+
print("\nGenerate: ", trim_decode_tokens)
|
217 |
+
|
218 |
+
if return_end_reason:
|
219 |
+
return trim_decode_tokens, end_reason
|
220 |
+
else:
|
221 |
+
return trim_decode_tokens
|
222 |
+
|
223 |
+
|
224 |
+
def _decode_chatml(
|
225 |
+
tokens: List[int],
|
226 |
+
*,
|
227 |
+
stop_words: List[str],
|
228 |
+
eod_token_ids: List[int],
|
229 |
+
tokenizer: PreTrainedTokenizer,
|
230 |
+
raw_text_len: int,
|
231 |
+
context_length: int,
|
232 |
+
verbose: bool = False,
|
233 |
+
return_end_reason: bool = False,
|
234 |
+
):
|
235 |
+
end_reason = f"Gen length {len(tokens)}"
|
236 |
+
eod_token_idx = context_length
|
237 |
+
for eod_token_idx in range(context_length, len(tokens)):
|
238 |
+
if tokens[eod_token_idx] in eod_token_ids:
|
239 |
+
end_reason = f"Gen {tokenizer.decode([tokens[eod_token_idx]])!r}"
|
240 |
+
break
|
241 |
+
|
242 |
+
trim_decode_tokens = tokenizer.decode(tokens[:eod_token_idx])[raw_text_len:]
|
243 |
+
if verbose:
|
244 |
+
print("\nRaw Generate w/o EOD:", tokenizer.decode(tokens)[raw_text_len:])
|
245 |
+
print("\nRaw Generate:", trim_decode_tokens)
|
246 |
+
print("\nEnd Reason:", end_reason)
|
247 |
+
for stop_word in stop_words:
|
248 |
+
trim_decode_tokens = trim_decode_tokens.replace(stop_word, "").strip()
|
249 |
+
trim_decode_tokens = trim_decode_tokens.strip()
|
250 |
+
if verbose:
|
251 |
+
print("\nGenerate:", trim_decode_tokens)
|
252 |
+
|
253 |
+
if return_end_reason:
|
254 |
+
return trim_decode_tokens, end_reason
|
255 |
+
else:
|
256 |
+
return trim_decode_tokens
|
257 |
+
|
258 |
+
|
259 |
+
def decode_tokens(
|
260 |
+
tokens: Union[torch.LongTensor, TokensType],
|
261 |
+
tokenizer: PreTrainedTokenizer,
|
262 |
+
raw_text_len: int,
|
263 |
+
context_length: int,
|
264 |
+
chat_format: str,
|
265 |
+
verbose: bool = False,
|
266 |
+
return_end_reason: bool = False,
|
267 |
+
) -> str:
|
268 |
+
if torch.is_tensor(tokens):
|
269 |
+
tokens = tokens.cpu().numpy().tolist()
|
270 |
+
|
271 |
+
if chat_format == "chatml":
|
272 |
+
return _decode_chatml(
|
273 |
+
tokens,
|
274 |
+
stop_words=[],
|
275 |
+
eod_token_ids=[tokenizer.im_start_id, tokenizer.im_end_id],
|
276 |
+
tokenizer=tokenizer,
|
277 |
+
raw_text_len=raw_text_len,
|
278 |
+
context_length=context_length,
|
279 |
+
verbose=verbose,
|
280 |
+
return_end_reason=return_end_reason,
|
281 |
+
)
|
282 |
+
elif chat_format == "raw":
|
283 |
+
return _decode_default(
|
284 |
+
tokens,
|
285 |
+
stop_words=["<|endoftext|>"],
|
286 |
+
eod_words=["<|endoftext|>"],
|
287 |
+
tokenizer=tokenizer,
|
288 |
+
raw_text_len=raw_text_len,
|
289 |
+
verbose=verbose,
|
290 |
+
return_end_reason=return_end_reason,
|
291 |
+
)
|
292 |
+
else:
|
293 |
+
raise NotImplementedError(f"Unknown chat format {chat_format!r}")
|
294 |
+
|
295 |
+
|
296 |
+
class StopWordsLogitsProcessor(LogitsProcessor):
|
297 |
+
"""
|
298 |
+
:class:`transformers.LogitsProcessor` that enforces that when specified sequences appear, stop geration.
|
299 |
+
|
300 |
+
Args:
|
301 |
+
stop_words_ids (:obj:`List[List[int]]`):
|
302 |
+
List of list of token ids of stop ids. In order to get the tokens of the words
|
303 |
+
that should not appear in the generated text, use :obj:`tokenizer(bad_word,
|
304 |
+
add_prefix_space=True).input_ids`.
|
305 |
+
eos_token_id (:obj:`int`):
|
306 |
+
The id of the `end-of-sequence` token.
|
307 |
+
"""
|
308 |
+
|
309 |
+
def __init__(self, stop_words_ids: Iterable[Iterable[int]], eos_token_id: int):
|
310 |
+
|
311 |
+
if not isinstance(stop_words_ids, List) or len(stop_words_ids) == 0:
|
312 |
+
raise ValueError(
|
313 |
+
f"`stop_words_ids` has to be a non-emtpy list, but is {stop_words_ids}."
|
314 |
+
)
|
315 |
+
if any(not isinstance(bad_word_ids, list) for bad_word_ids in stop_words_ids):
|
316 |
+
raise ValueError(
|
317 |
+
f"`stop_words_ids` has to be a list of lists, but is {stop_words_ids}."
|
318 |
+
)
|
319 |
+
if any(
|
320 |
+
any(
|
321 |
+
(not isinstance(token_id, (int, np.integer)) or token_id < 0)
|
322 |
+
for token_id in stop_word_ids
|
323 |
+
)
|
324 |
+
for stop_word_ids in stop_words_ids
|
325 |
+
):
|
326 |
+
raise ValueError(
|
327 |
+
f"Each list in `stop_words_ids` has to be a list of positive integers, but is {stop_words_ids}."
|
328 |
+
)
|
329 |
+
|
330 |
+
self.stop_words_ids = list(
|
331 |
+
filter(
|
332 |
+
lambda bad_token_seq: bad_token_seq != [eos_token_id], stop_words_ids
|
333 |
+
)
|
334 |
+
)
|
335 |
+
self.eos_token_id = eos_token_id
|
336 |
+
for stop_token_seq in self.stop_words_ids:
|
337 |
+
assert (
|
338 |
+
len(stop_token_seq) > 0
|
339 |
+
), "Stop words token sequences {} cannot have an empty list".format(
|
340 |
+
stop_words_ids
|
341 |
+
)
|
342 |
+
|
343 |
+
def __call__(
|
344 |
+
self, input_ids: torch.LongTensor, scores: torch.FloatTensor
|
345 |
+
) -> torch.FloatTensor:
|
346 |
+
stopped_samples = self._calc_stopped_samples(input_ids)
|
347 |
+
for i, should_stop in enumerate(stopped_samples):
|
348 |
+
if should_stop:
|
349 |
+
scores[i, self.eos_token_id] = float(2**30)
|
350 |
+
return scores
|
351 |
+
|
352 |
+
def _tokens_match(self, prev_tokens: torch.LongTensor, tokens: List[int]) -> bool:
|
353 |
+
if len(tokens) == 0:
|
354 |
+
# if bad word tokens is just one token always ban it
|
355 |
+
return True
|
356 |
+
elif len(tokens) > len(prev_tokens):
|
357 |
+
# if bad word tokens are longer then prev input_ids they can't be equal
|
358 |
+
return False
|
359 |
+
elif prev_tokens[-len(tokens) :].tolist() == tokens:
|
360 |
+
# if tokens match
|
361 |
+
return True
|
362 |
+
else:
|
363 |
+
return False
|
364 |
+
|
365 |
+
def _calc_stopped_samples(self, prev_input_ids: Iterable[int]) -> Iterable[int]:
|
366 |
+
stopped_samples = []
|
367 |
+
for prev_input_ids_slice in prev_input_ids:
|
368 |
+
match = False
|
369 |
+
for stop_token_seq in self.stop_words_ids:
|
370 |
+
if self._tokens_match(prev_input_ids_slice, stop_token_seq):
|
371 |
+
# if tokens do not match continue
|
372 |
+
match = True
|
373 |
+
break
|
374 |
+
stopped_samples.append(match)
|
375 |
+
|
376 |
+
return stopped_samples
|
377 |
+
|
378 |
+
|
379 |
+
def top_k_logits(logits, top_k=0, top_p=0.0, filter_value=-float("Inf")):
|
380 |
+
"""This function has been mostly taken from huggingface conversational
|
381 |
+
ai code at
|
382 |
+
https://medium.com/huggingface/how-to-build-a-state-of-the-art-
|
383 |
+
conversational-ai-with-transfer-learning-2d818ac26313"""
|
384 |
+
|
385 |
+
if top_k > 0:
|
386 |
+
# Remove all tokens with a probability less than the
|
387 |
+
# last token of the top-k
|
388 |
+
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
|
389 |
+
logits[indices_to_remove] = filter_value
|
390 |
+
|
391 |
+
if top_p > 0.0:
|
392 |
+
# Cconvert to 1D
|
393 |
+
sorted_logits, sorted_indices = torch.sort(logits, descending=True, dim=-1)
|
394 |
+
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
|
395 |
+
|
396 |
+
# Remove tokens with cumulative probability above the threshold
|
397 |
+
sorted_indices_to_remove = cumulative_probs > top_p
|
398 |
+
# Shift the indices to the right to keep also the first token
|
399 |
+
# above the threshold
|
400 |
+
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
|
401 |
+
sorted_indices_to_remove[..., 0] = 0
|
402 |
+
for i in range(sorted_indices.size(0)):
|
403 |
+
indices_to_remove = sorted_indices[i][sorted_indices_to_remove[i]]
|
404 |
+
logits[i][indices_to_remove] = filter_value
|
405 |
+
|
406 |
+
return logits
|
407 |
+
|
408 |
+
|
409 |
+
def switch(val1, val2, boolean):
|
410 |
+
boolean = boolean.type_as(val1)
|
411 |
+
return (1 - boolean) * val1 + boolean * val2
|
tokenization_qwen.py
ADDED
@@ -0,0 +1,243 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Alibaba Cloud.
|
2 |
+
#
|
3 |
+
# This source code is licensed under the license found in the
|
4 |
+
# LICENSE file in the root directory of this source tree.
|
5 |
+
|
6 |
+
"""Tokenization classes for QWen."""
|
7 |
+
|
8 |
+
from __future__ import absolute_import, division, print_function, unicode_literals
|
9 |
+
|
10 |
+
import json
|
11 |
+
import logging
|
12 |
+
import os
|
13 |
+
import unicodedata
|
14 |
+
from io import open
|
15 |
+
import base64
|
16 |
+
import tiktoken
|
17 |
+
from typing import List, Optional, Tuple, Union
|
18 |
+
|
19 |
+
from transformers import PreTrainedTokenizer, AddedToken
|
20 |
+
|
21 |
+
logger = logging.getLogger(__name__)
|
22 |
+
|
23 |
+
TIKTOKEN_NAME = "qwen.tiktoken"
|
24 |
+
|
25 |
+
|
26 |
+
class QWenTokenizer(PreTrainedTokenizer):
|
27 |
+
"""QWen tokenizer."""
|
28 |
+
|
29 |
+
"""NOTE: This tokenizer will not handle special tokens to avoid injection attacks"""
|
30 |
+
|
31 |
+
@classmethod
|
32 |
+
def from_pretrained(
|
33 |
+
cls, pretrained_model_name_or_path, cache_dir=None, *inputs, **kwargs
|
34 |
+
):
|
35 |
+
merges_file = os.path.join(pretrained_model_name_or_path, TIKTOKEN_NAME)
|
36 |
+
tokenizer = cls(merges_file, *inputs, **kwargs)
|
37 |
+
return tokenizer
|
38 |
+
|
39 |
+
def __init__(
|
40 |
+
self,
|
41 |
+
merges_file,
|
42 |
+
errors="replace",
|
43 |
+
max_len=None,
|
44 |
+
unk_token="<|endoftext|>",
|
45 |
+
bos_token="<|endoftext|>",
|
46 |
+
eos_token="<|endoftext|>",
|
47 |
+
pad_token=None,
|
48 |
+
add_prefix_space=False,
|
49 |
+
add_bos_token=False,
|
50 |
+
add_more_sp_tokens=True,
|
51 |
+
**kwargs,
|
52 |
+
):
|
53 |
+
bos_token = (
|
54 |
+
AddedToken(bos_token, lstrip=False, rstrip=False)
|
55 |
+
if isinstance(bos_token, str)
|
56 |
+
else bos_token
|
57 |
+
)
|
58 |
+
eos_token = (
|
59 |
+
AddedToken(eos_token, lstrip=False, rstrip=False)
|
60 |
+
if isinstance(eos_token, str)
|
61 |
+
else eos_token
|
62 |
+
)
|
63 |
+
unk_token = (
|
64 |
+
AddedToken(unk_token, lstrip=False, rstrip=False)
|
65 |
+
if isinstance(unk_token, str)
|
66 |
+
else unk_token
|
67 |
+
)
|
68 |
+
pad_token = (
|
69 |
+
AddedToken(pad_token, lstrip=False, rstrip=False)
|
70 |
+
if isinstance(pad_token, str)
|
71 |
+
else pad_token
|
72 |
+
)
|
73 |
+
super().__init__(
|
74 |
+
errors=errors,
|
75 |
+
unk_token=unk_token,
|
76 |
+
bos_token=bos_token,
|
77 |
+
eos_token=eos_token,
|
78 |
+
pad_token=pad_token,
|
79 |
+
add_prefix_space=add_prefix_space,
|
80 |
+
add_bos_token=add_bos_token,
|
81 |
+
)
|
82 |
+
self.add_bos_token = add_bos_token
|
83 |
+
self.max_len = max_len if max_len is not None else int(1e12)
|
84 |
+
|
85 |
+
self.errors = errors # how to handle errors in decoding
|
86 |
+
|
87 |
+
name = "QWen"
|
88 |
+
ENDOFTEXT = "<|endoftext|>"
|
89 |
+
IMSTART = "<|im_start|>"
|
90 |
+
IMEND = "<|im_end|>"
|
91 |
+
if add_more_sp_tokens:
|
92 |
+
special_tokens = (
|
93 |
+
ENDOFTEXT,
|
94 |
+
IMSTART,
|
95 |
+
IMEND,
|
96 |
+
"<R>",
|
97 |
+
"<S>",
|
98 |
+
"<X>",
|
99 |
+
"<mask>",
|
100 |
+
"<sep>",
|
101 |
+
) + tuple([f"<extra_{i}>" for i in range(200)])
|
102 |
+
else:
|
103 |
+
special_tokens = (ENDOFTEXT, IMSTART, IMEND)
|
104 |
+
|
105 |
+
PAT_STR = r"""(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+"""
|
106 |
+
|
107 |
+
def load_tiktoken_bpe(tiktoken_bpe_file: str) -> "dict[bytes, int]":
|
108 |
+
contents = open(tiktoken_bpe_file, "rb").read()
|
109 |
+
return {
|
110 |
+
base64.b64decode(token): int(rank)
|
111 |
+
for token, rank in (
|
112 |
+
line.split() for line in contents.splitlines() if line
|
113 |
+
)
|
114 |
+
}
|
115 |
+
|
116 |
+
mergeable_ranks = load_tiktoken_bpe(merges_file)
|
117 |
+
special_tokens = {
|
118 |
+
token: index
|
119 |
+
for index, token in enumerate(special_tokens, start=len(mergeable_ranks))
|
120 |
+
}
|
121 |
+
self.special_tokens = special_tokens
|
122 |
+
enc = tiktoken.Encoding(
|
123 |
+
name,
|
124 |
+
pat_str=PAT_STR,
|
125 |
+
mergeable_ranks=mergeable_ranks,
|
126 |
+
special_tokens=special_tokens,
|
127 |
+
)
|
128 |
+
assert (
|
129 |
+
len(mergeable_ranks) + len(special_tokens) == enc.n_vocab
|
130 |
+
), f"{len(mergeable_ranks) + len(special_tokens)} != {enc.n_vocab} in encoding"
|
131 |
+
|
132 |
+
self.mergeable_ranks = mergeable_ranks
|
133 |
+
self.encoder = self.mergeable_ranks
|
134 |
+
self.decoder = {v: k for k, v in self.encoder.items()}
|
135 |
+
self.tokenizer = enc # type: tiktoken.Encoding
|
136 |
+
self.eod_id = self.tokenizer.eot_token
|
137 |
+
self.im_start_id = special_tokens[IMSTART]
|
138 |
+
self.im_end_id = special_tokens[IMEND]
|
139 |
+
|
140 |
+
def __len__(self):
|
141 |
+
return self.tokenizer.n_vocab
|
142 |
+
|
143 |
+
def get_vocab(self):
|
144 |
+
return self.mergeable_ranks
|
145 |
+
|
146 |
+
def convert_tokens_to_ids(self, tokens):
|
147 |
+
ids = []
|
148 |
+
# Remove support for py2
|
149 |
+
if isinstance(tokens, str):
|
150 |
+
if tokens in self.special_tokens:
|
151 |
+
return self.special_tokens[tokens]
|
152 |
+
else:
|
153 |
+
return self.encoder.get(tokens)
|
154 |
+
for token in tokens:
|
155 |
+
if token in self.special_tokens:
|
156 |
+
ids.append(self.special_tokens[token])
|
157 |
+
else:
|
158 |
+
ids.append(self.encoder.get(token))
|
159 |
+
if len(ids) > self.max_len:
|
160 |
+
logger.warning(
|
161 |
+
"Token indices sequence length is longer than the specified maximum "
|
162 |
+
" sequence length for this OpenAI GPT model ({} > {}). Running this"
|
163 |
+
" sequence through the model will result in indexing errors".format(
|
164 |
+
len(ids), self.max_len
|
165 |
+
)
|
166 |
+
)
|
167 |
+
return ids
|
168 |
+
|
169 |
+
def save_vocabulary(self, save_directory: str) -> Tuple[str]:
|
170 |
+
"""
|
171 |
+
Save only the vocabulary of the tokenizer (vocabulary + added tokens).
|
172 |
+
|
173 |
+
Returns:
|
174 |
+
`Tuple(str)`: Paths to the files saved.
|
175 |
+
"""
|
176 |
+
file_path = os.path.join(save_directory, "qwen.tiktoken")
|
177 |
+
with open(file_path, "w", encoding="utf8") as w:
|
178 |
+
for k, v in self.mergeable_ranks.items():
|
179 |
+
line = base64.b64encode(k).decode("utf8") + " " + str(v) + "\n"
|
180 |
+
w.write(line)
|
181 |
+
return (file_path,)
|
182 |
+
|
183 |
+
def tokenize(self, text: str, **kwargs) -> List[str]:
|
184 |
+
"""
|
185 |
+
Converts a string in a sequence of tokens, replacing unknown tokens with the `unk_token`.
|
186 |
+
|
187 |
+
Args:
|
188 |
+
text (`str`):
|
189 |
+
The sequence to be encoded.
|
190 |
+
pair (`str`, *optional*):
|
191 |
+
A second sequence to be encoded with the first.
|
192 |
+
add_special_tokens (`bool`, *optional*, defaults to `False`):
|
193 |
+
Whether or not to add the special tokens associated with the corresponding model.
|
194 |
+
kwargs (additional keyword arguments, *optional*):
|
195 |
+
Will be passed to the underlying model specific encode method. See details in
|
196 |
+
[`~PreTrainedTokenizerBase.__call__`]
|
197 |
+
|
198 |
+
Returns:
|
199 |
+
`List[str]`: The list of tokens.
|
200 |
+
"""
|
201 |
+
tokens = []
|
202 |
+
text = unicodedata.normalize("NFC", text)
|
203 |
+
for t in self.tokenizer.encode_ordinary(text):
|
204 |
+
tokens.append(self.decoder[t])
|
205 |
+
return tokens
|
206 |
+
|
207 |
+
def convert_tokens_to_string(self, tokens: List[str]) -> str:
|
208 |
+
"""
|
209 |
+
Converts a sequence of tokens in a single string. The most simple way to do it is `" ".join(tokens)` but we
|
210 |
+
often want to remove sub-word tokenization artifacts at the same time.
|
211 |
+
"""
|
212 |
+
text = "".join(tokens)
|
213 |
+
text = bytearray([self.byte_decoder[c] for c in text]).decode(
|
214 |
+
"utf-8", errors=self.errors
|
215 |
+
)
|
216 |
+
return text
|
217 |
+
|
218 |
+
@property
|
219 |
+
def vocab_size(self):
|
220 |
+
return self.tokenizer.n_vocab
|
221 |
+
|
222 |
+
def _convert_id_to_token(self, index: int) -> str:
|
223 |
+
raise NotImplementedError
|
224 |
+
|
225 |
+
def _tokenize(self, text, **kwargs):
|
226 |
+
"""
|
227 |
+
Converts a string in a sequence of tokens (string), using the tokenizer. Split in words for word-based
|
228 |
+
vocabulary or sub-words for sub-word-based vocabularies (BPE/SentencePieces/WordPieces).
|
229 |
+
|
230 |
+
Do NOT take care of added tokens.
|
231 |
+
"""
|
232 |
+
raise NotImplementedError
|
233 |
+
|
234 |
+
def _decode(
|
235 |
+
self,
|
236 |
+
token_ids: Union[int, List[int]],
|
237 |
+
skip_special_tokens: bool = False,
|
238 |
+
clean_up_tokenization_spaces: bool = None,
|
239 |
+
**kwargs,
|
240 |
+
) -> str:
|
241 |
+
if isinstance(token_ids, int):
|
242 |
+
token_ids = [token_ids]
|
243 |
+
return self.tokenizer.decode(token_ids)
|
tokenizer_config.json
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"remove_space": false,
|
3 |
+
"do_lower_case": false,
|
4 |
+
"tokenizer_class": "QWenTokenizer",
|
5 |
+
"auto_map": {
|
6 |
+
"AutoTokenizer": [
|
7 |
+
"tokenization_qwen.QWenTokenizer",
|
8 |
+
null
|
9 |
+
]
|
10 |
+
}
|
11 |
+
}
|