Qwen
/

Text Generation
Transformers
Safetensors
Chinese
English
qwen
custom_code
yangapku commited on
Commit
4d36b10
1 Parent(s): 583aaa0

update readme

Browse files
Files changed (1) hide show
  1. README.md +4 -5
README.md CHANGED
@@ -49,7 +49,6 @@ For more details about the open-source model of Qwen-7B, please refer to the [Gi
49
  * 建议使用CUDA 11.4及以上(GPU用户、flash-attention用户等需考虑此选项)
50
 
51
 
52
-
53
  * python 3.8 and above
54
  * pytorch 1.12 and above, 2.0 and above are recommended
55
  * CUDA 11.4 and above are recommended (this is for GPU users, flash-attention users, etc.)
@@ -58,7 +57,7 @@ For more details about the open-source model of Qwen-7B, please refer to the [Gi
58
 
59
  运行Qwen-7B,请确保满足上述要求,再执行以下pip命令安装依赖库
60
 
61
- To run Qwen-7B, please make sure that pytorch version is not lower than 1.12, and then execute the following pip commands to install the dependent libraries.
62
 
63
  ```bash
64
  pip install transformers==4.31.0 accelerate tiktoken einops
@@ -321,9 +320,9 @@ We introduce NTK-aware interpolation, LogN attention scaling, Window attention,
321
 
322
  ## 量化(Quantization)
323
 
324
- 如希望使用更低精度的量化模型,如4比特和8比特的模型,我们提供了简单的示例来说明如何快速使用量化模型。在开始前,确保你已经安装了`bitsandbytes`。请注意:`bitsandbytes`的安装要求是:
325
 
326
- We provide examples to show how to load models in `NF4` and `Int8`. For starters, make sure you have implemented `bitsandbytes`. Note that the requirements for `bitsandbytes` is:
327
 
328
  ```
329
  **Requirements** Python >=3.8. Linux distribution (Ubuntu, MacOS, etc.) + CUDA > 10.0.
@@ -342,7 +341,7 @@ pip install bitsandbytes
342
  Then you only need to add your quantization configuration to `AutoModelForCausalLM.from_pretrained`. See the example below:
343
 
344
  ```python
345
- from transformers import BitsAndBytesConfig
346
 
347
  # quantization configuration for NF4 (4 bits)
348
  quantization_config = BitsAndBytesConfig(
 
49
  * 建议使用CUDA 11.4及以上(GPU用户、flash-attention用户等需考虑此选项)
50
 
51
 
 
52
  * python 3.8 and above
53
  * pytorch 1.12 and above, 2.0 and above are recommended
54
  * CUDA 11.4 and above are recommended (this is for GPU users, flash-attention users, etc.)
 
57
 
58
  运行Qwen-7B,请确保满足上述要求,再执行以下pip命令安装依赖库
59
 
60
+ To run Qwen-7B, please make sure you meet the above requirements, and then execute the following pip commands to install the dependent libraries.
61
 
62
  ```bash
63
  pip install transformers==4.31.0 accelerate tiktoken einops
 
320
 
321
  ## 量化(Quantization)
322
 
323
+ 如希望使用更低精度的量化模型,如4比特和8比特的模型,我们提供了简单的示例来说明如何快速使用量化模型。在开始前,确保你已经安装了`bitsandbytes`。请注意,`bitsandbytes`的安装要求是:
324
 
325
+ We provide examples to show how to load models in `NF4` and `Int8`. For starters, make sure you have implemented `bitsandbytes`. Note that the requirements for `bitsandbytes` are:
326
 
327
  ```
328
  **Requirements** Python >=3.8. Linux distribution (Ubuntu, MacOS, etc.) + CUDA > 10.0.
 
341
  Then you only need to add your quantization configuration to `AutoModelForCausalLM.from_pretrained`. See the example below:
342
 
343
  ```python
344
+ from transformers import AutoModelForCausalLM, BitsAndBytesConfig
345
 
346
  # quantization configuration for NF4 (4 bits)
347
  quantization_config = BitsAndBytesConfig(