|
|
|
|
|
|
|
|
|
|
|
import importlib |
|
import math |
|
from typing import TYPE_CHECKING, Optional, Tuple, Union, Callable, List, Any, Generator |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
import torch.utils.checkpoint |
|
from torch.cuda.amp import autocast |
|
|
|
from torch.nn import CrossEntropyLoss |
|
from transformers import PreTrainedTokenizer, GenerationConfig, StoppingCriteriaList |
|
from transformers.generation.logits_process import LogitsProcessorList |
|
|
|
if TYPE_CHECKING: |
|
from transformers.generation.streamers import BaseStreamer |
|
from transformers.generation.utils import GenerateOutput |
|
from transformers.modeling_outputs import ( |
|
BaseModelOutputWithPast, |
|
CausalLMOutputWithPast, |
|
) |
|
from transformers.modeling_utils import PreTrainedModel |
|
from transformers.utils import logging |
|
|
|
try: |
|
from einops import rearrange |
|
except ImportError: |
|
rearrange = None |
|
from torch import nn |
|
|
|
SUPPORT_CUDA = torch.cuda.is_available() |
|
SUPPORT_BF16 = SUPPORT_CUDA and torch.cuda.is_bf16_supported() |
|
SUPPORT_FP16 = SUPPORT_CUDA and torch.cuda.get_device_capability(0)[0] >= 7 |
|
|
|
from .configuration_qwen import QWenConfig |
|
from .qwen_generation_utils import ( |
|
HistoryType, |
|
make_context, |
|
decode_tokens, |
|
get_stop_words_ids, |
|
StopWordsLogitsProcessor, |
|
) |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
_CHECKPOINT_FOR_DOC = "qwen" |
|
_CONFIG_FOR_DOC = "QWenConfig" |
|
|
|
QWen_PRETRAINED_MODEL_ARCHIVE_LIST = ["qwen-7b"] |
|
|
|
_ERROR_BAD_CHAT_FORMAT = """\ |
|
We detect you are probably using the pretrained model (rather than chat model) for chatting, since the chat_format in generation_config is not "chatml". |
|
If you are directly using the model downloaded from Huggingface, please make sure you are using our "Qwen/Qwen-7B-Chat" Huggingface model (rather than "Qwen/Qwen-7B") when you call model.chat(). |
|
我们检测到您可能在使用预训练模型(而非chat模型)进行多轮chat,因为您当前在generation_config指定的chat_format,并未设置为我们在对话中所支持的"chatml"格式。 |
|
如果您在直接使用我们从Huggingface提供的模型,请确保您在调用model.chat()时,使用的是"Qwen/Qwen-7B-Chat"模型(而非"Qwen/Qwen-7B"预训练模型)。 |
|
""" |
|
|
|
_SENTINEL = object() |
|
_ERROR_STREAM_IN_CHAT = """\ |
|
Pass argument `stream` to model.chat() is buggy, deprecated, and marked for removal. Please use model.chat_stream(...) instead of model.chat(..., stream=True). |
|
向model.chat()传入参数stream的用法可能存在Bug,该用法已被废弃,将在未来被移除。请使用model.chat_stream(...)代替model.chat(..., stream=True)。 |
|
""" |
|
|
|
_ERROR_INPUT_CPU_QUERY_WITH_FLASH_ATTN_ACTIVATED = """\ |
|
We detect you have activated flash attention support, but running model computation on CPU. Please make sure that your input data has been placed on GPU. If you actually want to run CPU computation, please following the readme and set device_map="cpu" to disable flash attention when loading the model (calling AutoModelForCausalLM.from_pretrained). |
|
检测到您的模型已激活了flash attention支持,但正在执行CPU运算任务。如使用flash attention,请您确认模型输入已经传到GPU上。如果您确认要执行CPU运算,请您在载入模型(调用AutoModelForCausalLM.from_pretrained)时,按照readme说法,指定device_map="cpu"以禁用flash attention。 |
|
""" |
|
|
|
apply_rotary_emb_func = None |
|
rms_norm = None |
|
flash_attn_unpadded_func = None |
|
|
|
def _import_flash_attn(): |
|
global apply_rotary_emb_func, rms_norm, flash_attn_unpadded_func |
|
try: |
|
from flash_attn.layers.rotary import apply_rotary_emb_func as __apply_rotary_emb_func |
|
apply_rotary_emb_func = __apply_rotary_emb_func |
|
except ImportError: |
|
logger.warn( |
|
"Warning: import flash_attn rotary fail, please install FlashAttention rotary to get higher efficiency " |
|
"https://github.com/Dao-AILab/flash-attention/tree/main/csrc/rotary" |
|
) |
|
|
|
try: |
|
from flash_attn.ops.rms_norm import rms_norm as __rms_norm |
|
rms_norm = __rms_norm |
|
except ImportError: |
|
logger.warn( |
|
"Warning: import flash_attn rms_norm fail, please install FlashAttention layer_norm to get higher efficiency " |
|
"https://github.com/Dao-AILab/flash-attention/tree/main/csrc/layer_norm" |
|
) |
|
|
|
try: |
|
import flash_attn |
|
if not hasattr(flash_attn, '__version__'): |
|
from flash_attn.flash_attn_interface import flash_attn_unpadded_func as __flash_attn_unpadded_func |
|
else: |
|
if int(flash_attn.__version__.split(".")[0]) >= 2: |
|
from flash_attn.flash_attn_interface import flash_attn_varlen_func as __flash_attn_unpadded_func |
|
else: |
|
from flash_attn.flash_attn_interface import flash_attn_unpadded_func as __flash_attn_unpadded_func |
|
flash_attn_unpadded_func = __flash_attn_unpadded_func |
|
except ImportError: |
|
logger.warn( |
|
"Warning: import flash_attn fail, please install FlashAttention to get higher efficiency " |
|
"https://github.com/Dao-AILab/flash-attention" |
|
) |
|
|
|
def quantize_cache_v(fdata, bits, qmax, qmin): |
|
|
|
qtype = torch.uint8 |
|
device = fdata.device |
|
shape = fdata.shape |
|
|
|
fdata_cal = torch.flatten(fdata, 2) |
|
fmax = torch.amax(fdata_cal, dim=-1, keepdim=True) |
|
fmin = torch.amin(fdata_cal, dim=-1, keepdim=True) |
|
|
|
if qmax.device != fmax.device: |
|
qmax = qmax.to(device) |
|
qmin = qmin.to(device) |
|
scale = (fmax - fmin) / (qmax - qmin) |
|
zero = qmin - fmin / scale |
|
scale = scale.unsqueeze(-1).repeat(1,1,shape[2],1).contiguous() |
|
zero = zero.unsqueeze(-1).repeat(1,1,shape[2],1).contiguous() |
|
|
|
res_data = fdata / scale + zero |
|
qdata = torch.clamp(res_data, qmin, qmax).to(qtype) |
|
return qdata.contiguous(), scale, zero |
|
|
|
def dequantize_cache_torch(qdata, scale, zero): |
|
data = scale * (qdata - zero) |
|
return data |
|
|
|
class FlashSelfAttention(torch.nn.Module): |
|
def __init__( |
|
self, |
|
causal=False, |
|
softmax_scale=None, |
|
attention_dropout=0.0, |
|
): |
|
super().__init__() |
|
assert flash_attn_unpadded_func is not None, ( |
|
"Please install FlashAttention first, " "e.g., with pip install flash-attn" |
|
) |
|
assert ( |
|
rearrange is not None |
|
), "Please install einops first, e.g., with pip install einops" |
|
self.causal = causal |
|
self.softmax_scale = softmax_scale |
|
self.dropout_p = attention_dropout |
|
|
|
def unpad_input(self, hidden_states, attention_mask): |
|
valid_mask = attention_mask.squeeze(1).squeeze(1).eq(0) |
|
seqlens_in_batch = valid_mask.sum(dim=-1, dtype=torch.int32) |
|
indices = torch.nonzero(valid_mask.flatten(), as_tuple=False).flatten() |
|
max_seqlen_in_batch = seqlens_in_batch.max().item() |
|
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0)) |
|
hidden_states = hidden_states[indices] |
|
return hidden_states, indices, cu_seqlens, max_seqlen_in_batch |
|
|
|
def pad_input(self, hidden_states, indices, batch, seqlen): |
|
output = torch.zeros(batch * seqlen, *hidden_states.shape[1:], device=hidden_states.device, |
|
dtype=hidden_states.dtype) |
|
output[indices] = hidden_states |
|
return rearrange(output, '(b s) ... -> b s ...', b=batch) |
|
|
|
def forward(self, q, k, v, attention_mask=None): |
|
assert all((i.dtype in [torch.float16, torch.bfloat16] for i in (q, k, v))) |
|
assert all((i.is_cuda for i in (q, k, v))) |
|
batch_size, seqlen_q = q.shape[0], q.shape[1] |
|
seqlen_k = k.shape[1] |
|
seqlen_out = seqlen_q |
|
|
|
q, k, v = [rearrange(x, "b s ... -> (b s) ...") for x in [q, k, v]] |
|
cu_seqlens_q = torch.arange( |
|
0, |
|
(batch_size + 1) * seqlen_q, |
|
step=seqlen_q, |
|
dtype=torch.int32, |
|
device=q.device, |
|
) |
|
|
|
if attention_mask is not None: |
|
k, indices_k, cu_seqlens_k, seqlen_k = self.unpad_input(k, attention_mask) |
|
if q.size(0) == v.size(0): |
|
q = q[indices_k] |
|
cu_seqlens_q = cu_seqlens_k |
|
seqlen_q = seqlen_k |
|
v = v[indices_k] |
|
else: |
|
cu_seqlens_k = torch.arange( |
|
0, |
|
(batch_size + 1) * seqlen_k, |
|
step=seqlen_k, |
|
dtype=torch.int32, |
|
device=q.device, |
|
) |
|
|
|
if self.training: |
|
assert seqlen_k == seqlen_q |
|
is_causal = self.causal |
|
dropout_p = self.dropout_p |
|
else: |
|
is_causal = seqlen_q == seqlen_k |
|
dropout_p = 0 |
|
|
|
output = flash_attn_unpadded_func( |
|
q, |
|
k, |
|
v, |
|
cu_seqlens_q, |
|
cu_seqlens_k, |
|
seqlen_q, |
|
seqlen_k, |
|
dropout_p, |
|
softmax_scale=self.softmax_scale, |
|
causal=is_causal, |
|
) |
|
if attention_mask is not None and seqlen_q == seqlen_k: |
|
output = self.pad_input(output, indices_k, batch_size, seqlen_out) |
|
else: |
|
new_shape = (batch_size, output.shape[0] // batch_size) + output.shape[1:] |
|
output = output.view(new_shape) |
|
return output |
|
|
|
|
|
class QWenAttention(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
|
|
self.register_buffer("masked_bias", torch.tensor(-1e4), persistent=False) |
|
self.seq_length = config.seq_length |
|
|
|
self.hidden_size = config.hidden_size |
|
self.split_size = config.hidden_size |
|
self.num_heads = config.num_attention_heads |
|
self.head_dim = self.hidden_size // self.num_heads |
|
|
|
self.use_flash_attn = config.use_flash_attn |
|
self.scale_attn_weights = True |
|
|
|
self.projection_size = config.kv_channels * config.num_attention_heads |
|
|
|
assert self.projection_size % config.num_attention_heads == 0 |
|
self.hidden_size_per_attention_head = ( |
|
self.projection_size // config.num_attention_heads |
|
) |
|
|
|
self.c_attn = nn.Linear(config.hidden_size, 3 * self.projection_size) |
|
|
|
self.c_proj = nn.Linear( |
|
config.hidden_size, self.projection_size, bias=not config.no_bias |
|
) |
|
|
|
self.is_fp32 = not (config.bf16 or config.fp16) |
|
if ( |
|
self.use_flash_attn |
|
and flash_attn_unpadded_func is not None |
|
and not self.is_fp32 |
|
): |
|
self.core_attention_flash = FlashSelfAttention( |
|
causal=True, attention_dropout=config.attn_dropout_prob |
|
) |
|
self.bf16 = config.bf16 |
|
|
|
self.use_dynamic_ntk = config.use_dynamic_ntk |
|
self.use_logn_attn = config.use_logn_attn |
|
|
|
logn_list = [ |
|
math.log(i, self.seq_length) if i > self.seq_length else 1 |
|
for i in range(1, 32768) |
|
] |
|
logn_tensor = torch.tensor(logn_list)[None, :, None, None] |
|
self.register_buffer("logn_tensor", logn_tensor, persistent=False) |
|
|
|
self.attn_dropout = nn.Dropout(config.attn_dropout_prob) |
|
self.use_cache_quantization = config.use_cache_quantization if hasattr(config, 'use_cache_quantization') else False |
|
self.use_cache_kernel = config.use_cache_kernel if hasattr(config,'use_cache_kernel') else False |
|
cache_dtype = torch.float |
|
if self.bf16: |
|
cache_dtype=torch.bfloat16 |
|
elif config.fp16: |
|
cache_dtype = torch.float16 |
|
self.cache_qmax = torch.tensor(torch.iinfo(torch.uint8).max, dtype=cache_dtype) |
|
self.cache_qmin = torch.tensor(torch.iinfo(torch.uint8).min, dtype=cache_dtype) |
|
|
|
if config.use_cache_quantization and config.use_cache_kernel: |
|
from .cpp_kernels import cache_autogptq_cuda_256 |
|
try: |
|
self.cache_kernels = cache_autogptq_cuda_256 |
|
except ImportError: |
|
self.cache_kernels = None |
|
|
|
def _attn(self, query, key, value, registered_causal_mask, attention_mask=None, head_mask=None): |
|
device = query.device |
|
if self.use_cache_quantization: |
|
qk, qk_scale, qk_zero = key |
|
if self.use_cache_kernel and self.cache_kernels is not None: |
|
shape = query.shape[:-1] + (qk.shape[-2],) |
|
attn_weights = torch.zeros(shape, dtype=torch.float16, device=device) |
|
self.cache_kernels.vecquant8matmul_batched_faster_old( |
|
query.contiguous() if query.dtype == torch.float16 else query.to(torch.float16).contiguous(), |
|
qk.transpose(-1, -2).contiguous(), |
|
attn_weights, |
|
qk_scale.contiguous() if qk_scale.dtype == torch.float16 else qk_scale.to(torch.float16).contiguous(), |
|
qk_zero.contiguous()if qk_zero.dtype == torch.float16 else qk_zero.to(torch.float16).contiguous()) |
|
|
|
else: |
|
key = dequantize_cache_torch(qk, qk_scale, qk_zero) |
|
attn_weights = torch.matmul(query, key.transpose(-1, -2)) |
|
else: |
|
attn_weights = torch.matmul(query, key.transpose(-1, -2)) |
|
|
|
if self.scale_attn_weights: |
|
if self.use_cache_quantization: |
|
size_temp = value[0].size(-1) |
|
else: |
|
size_temp = value.size(-1) |
|
attn_weights = attn_weights / torch.full( |
|
[], |
|
size_temp ** 0.5, |
|
dtype=attn_weights.dtype, |
|
device=attn_weights.device, |
|
) |
|
if self.use_cache_quantization: |
|
query_length, key_length = query.size(-2), key[0].size(-2) |
|
else: |
|
query_length, key_length = query.size(-2), key.size(-2) |
|
causal_mask = registered_causal_mask[ |
|
:, :, key_length - query_length : key_length, :key_length |
|
] |
|
mask_value = torch.finfo(attn_weights.dtype).min |
|
mask_value = torch.full([], mask_value, dtype=attn_weights.dtype).to( |
|
attn_weights.device |
|
) |
|
attn_weights = torch.where( |
|
causal_mask, attn_weights.to(attn_weights.dtype), mask_value |
|
) |
|
|
|
if attention_mask is not None: |
|
attn_weights = attn_weights + attention_mask |
|
|
|
attn_weights = nn.functional.softmax(attn_weights.float(), dim=-1) |
|
|
|
attn_weights = attn_weights.type(query.dtype) |
|
attn_weights = self.attn_dropout(attn_weights) |
|
|
|
if head_mask is not None: |
|
attn_weights = attn_weights * head_mask |
|
|
|
if self.use_cache_quantization: |
|
qv, qv_scale, qv_zero = value |
|
if self.use_cache_kernel and self.cache_kernels is not None: |
|
shape = attn_weights.shape[:-1] + (query.shape[-1],) |
|
attn_output = torch.zeros(shape, dtype=torch.float16, device=device) |
|
self.cache_kernels.vecquant8matmul_batched_column_compression_faster_old( |
|
attn_weights.contiguous() if attn_weights.dtype == torch.float16 else attn_weights.to(torch.float16).contiguous(), |
|
qv.contiguous(), |
|
attn_output, |
|
qv_scale.contiguous() if qv_scale.dtype == torch.float16 else qv_scale.to(torch.float16).contiguous(), |
|
qv_zero.contiguous() if qv_zero.dtype == torch.float16 else qv_zero.to(torch.float16).contiguous()) |
|
if attn_output.dtype != query.dtype: |
|
attn_output = attn_output.to(query.dtype) |
|
attn_weights = attn_weights.to(query.dtype) |
|
else: |
|
value = dequantize_cache_torch(qv, qv_scale, qv_zero) |
|
attn_output = torch.matmul(attn_weights, value) |
|
else: |
|
attn_output = torch.matmul(attn_weights, value) |
|
|
|
attn_output = attn_output.transpose(1, 2) |
|
|
|
return attn_output, attn_weights |
|
|
|
def _upcast_and_reordered_attn( |
|
self, query, key, value, registered_causal_mask, attention_mask=None, head_mask=None |
|
): |
|
bsz, num_heads, q_seq_len, dk = query.size() |
|
_, _, k_seq_len, _ = key.size() |
|
|
|
attn_weights = torch.empty( |
|
bsz * num_heads, |
|
q_seq_len, |
|
k_seq_len, |
|
dtype=torch.float32, |
|
device=query.device, |
|
) |
|
|
|
scale_factor = 1.0 |
|
if self.scale_attn_weights: |
|
scale_factor /= float(value.size(-1)) ** 0.5 |
|
|
|
with autocast(enabled=False): |
|
q, k = query.reshape(-1, q_seq_len, dk), key.transpose(-1, -2).reshape( |
|
-1, dk, k_seq_len |
|
) |
|
attn_weights = torch.baddbmm( |
|
attn_weights, q.float(), k.float(), beta=0, alpha=scale_factor |
|
) |
|
attn_weights = attn_weights.reshape(bsz, num_heads, q_seq_len, k_seq_len) |
|
|
|
query_length, key_length = query.size(-2), key.size(-2) |
|
causal_mask = registered_causal_mask[ |
|
:, :, key_length - query_length : key_length, :key_length |
|
] |
|
mask_value = torch.finfo(attn_weights.dtype).min |
|
mask_value = torch.tensor(mask_value, dtype=attn_weights.dtype).to( |
|
attn_weights.device |
|
) |
|
attn_weights = torch.where(causal_mask, attn_weights, mask_value) |
|
|
|
if attention_mask is not None: |
|
attn_weights = attn_weights + attention_mask |
|
|
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1) |
|
|
|
if attn_weights.dtype != torch.float32: |
|
raise RuntimeError( |
|
"Error with upcasting, attn_weights does not have dtype torch.float32" |
|
) |
|
attn_weights = attn_weights.type(value.dtype) |
|
attn_weights = self.attn_dropout(attn_weights) |
|
|
|
if head_mask is not None: |
|
attn_weights = attn_weights * head_mask |
|
|
|
attn_output = torch.matmul(attn_weights, value) |
|
|
|
return attn_output, attn_weights |
|
|
|
def _split_heads(self, tensor, num_heads, attn_head_size): |
|
new_shape = tensor.size()[:-1] + (num_heads, attn_head_size) |
|
tensor = tensor.view(new_shape) |
|
return tensor |
|
|
|
def _merge_heads(self, tensor, num_heads, attn_head_size): |
|
tensor = tensor.contiguous() |
|
new_shape = tensor.size()[:-2] + (num_heads * attn_head_size,) |
|
return tensor.view(new_shape) |
|
|
|
def forward( |
|
self, |
|
hidden_states: Optional[Tuple[torch.FloatTensor]], |
|
rotary_pos_emb_list: Optional[List[torch.Tensor]] = None, |
|
registered_causal_mask: Optional[torch.Tensor] = None, |
|
layer_past: Optional[Tuple[torch.Tensor]] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
encoder_hidden_states: Optional[torch.Tensor] = None, |
|
encoder_attention_mask: Optional[torch.FloatTensor] = None, |
|
output_attentions: Optional[bool] = False, |
|
use_cache: Optional[bool] = False, |
|
): |
|
mixed_x_layer = self.c_attn(hidden_states) |
|
|
|
query, key, value = mixed_x_layer.split(self.split_size, dim=2) |
|
|
|
query = self._split_heads(query, self.num_heads, self.head_dim) |
|
key = self._split_heads(key, self.num_heads, self.head_dim) |
|
value = self._split_heads(value, self.num_heads, self.head_dim) |
|
|
|
if rotary_pos_emb_list is not None: |
|
cur_len = query.shape[1] |
|
if len(rotary_pos_emb_list) == 1: |
|
rotary_pos_emb = rotary_pos_emb_list[0] |
|
rotary_pos_emb = [i[:, -cur_len:, :, :] for i in rotary_pos_emb] |
|
rotary_pos_emb = (rotary_pos_emb,) * 2 |
|
q_pos_emb, k_pos_emb = rotary_pos_emb |
|
|
|
query = apply_rotary_pos_emb(query, q_pos_emb) |
|
key = apply_rotary_pos_emb(key, k_pos_emb) |
|
else: |
|
query_list = [] |
|
key_list = [] |
|
for i, rotary_pos_emb in enumerate(rotary_pos_emb_list): |
|
rotary_pos_emb = [i[:, -cur_len:, :, :] for i in rotary_pos_emb] |
|
rotary_pos_emb = (rotary_pos_emb,) * 2 |
|
q_pos_emb, k_pos_emb = rotary_pos_emb |
|
|
|
query_list += [apply_rotary_pos_emb(query[i:i+1, :, :], q_pos_emb)] |
|
key_list += [apply_rotary_pos_emb(key[i:i+1, :, :], k_pos_emb)] |
|
query = torch.cat(query_list, dim=0) |
|
key = torch.cat(key_list, dim=0) |
|
|
|
if self.use_cache_quantization: |
|
key = quantize_cache_v(key.permute(0, 2, 1, 3), |
|
bits=8, |
|
qmin=self.cache_qmin, |
|
qmax=self.cache_qmax) |
|
value = quantize_cache_v(value.permute(0, 2, 1, 3), |
|
bits=8, |
|
qmin=self.cache_qmin, |
|
qmax=self.cache_qmax) |
|
|
|
|
|
if layer_past is not None: |
|
past_key, past_value = layer_past[0], layer_past[1] |
|
if self.use_cache_quantization: |
|
|
|
|
|
|
|
key = (torch.cat((past_key[0], key[0]), dim=2), |
|
torch.cat((past_key[1], key[1]), dim=2), |
|
torch.cat((past_key[2], key[2]), dim=2)) |
|
value = (torch.cat((past_value[0], value[0]), dim=2), |
|
torch.cat((past_value[1], value[1]), dim=2), |
|
torch.cat((past_value[2], value[2]), dim=2)) |
|
else: |
|
|
|
|
|
key = torch.cat((past_key, key), dim=1) |
|
value = torch.cat((past_value, value), dim=1) |
|
|
|
if use_cache: |
|
present = (key, value) |
|
else: |
|
present = None |
|
|
|
if self.use_logn_attn and not self.training: |
|
if self.use_cache_quantization: |
|
seq_start = key[0].size(2) - query.size(1) |
|
seq_end = key[0].size(2) |
|
else: |
|
seq_start = key.size(1) - query.size(1) |
|
seq_end = key.size(1) |
|
logn_tensor = self.logn_tensor[:, seq_start:seq_end, :, :] |
|
query = query * logn_tensor.expand_as(query) |
|
|
|
if ( |
|
self.use_flash_attn |
|
and flash_attn_unpadded_func is not None |
|
and not self.is_fp32 |
|
and query.is_cuda |
|
): |
|
q, k, v = query, key, value |
|
context_layer = self.core_attention_flash(q, k, v, attention_mask=attention_mask) |
|
|
|
|
|
context_layer = context_layer.flatten(2,3).contiguous() |
|
|
|
else: |
|
query = query.permute(0, 2, 1, 3) |
|
if not self.use_cache_quantization: |
|
key = key.permute(0, 2, 1, 3) |
|
value = value.permute(0, 2, 1, 3) |
|
if ( |
|
registered_causal_mask is None |
|
and self.use_flash_attn |
|
and flash_attn_unpadded_func is not None |
|
and not self.is_fp32 |
|
and not query.is_cuda |
|
): |
|
raise Exception(_ERROR_INPUT_CPU_QUERY_WITH_FLASH_ATTN_ACTIVATED) |
|
attn_output, attn_weight = self._attn( |
|
query, key, value, registered_causal_mask, attention_mask, head_mask |
|
) |
|
context_layer = self._merge_heads( |
|
attn_output, self.num_heads, self.head_dim |
|
) |
|
|
|
attn_output = self.c_proj(context_layer) |
|
|
|
outputs = (attn_output, present) |
|
if output_attentions: |
|
if ( |
|
self.use_flash_attn |
|
and flash_attn_unpadded_func is not None |
|
and not self.is_fp32 |
|
): |
|
raise ValueError("Cannot output attentions while using flash-attn") |
|
else: |
|
outputs += (attn_weight,) |
|
|
|
return outputs |
|
|
|
|
|
class QWenMLP(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.w1 = nn.Linear( |
|
config.hidden_size, config.intermediate_size // 2, bias=not config.no_bias |
|
) |
|
self.w2 = nn.Linear( |
|
config.hidden_size, config.intermediate_size // 2, bias=not config.no_bias |
|
) |
|
ff_dim_in = config.intermediate_size // 2 |
|
self.c_proj = nn.Linear(ff_dim_in, config.hidden_size, bias=not config.no_bias) |
|
|
|
def forward(self, hidden_states): |
|
a1 = self.w1(hidden_states) |
|
a2 = self.w2(hidden_states) |
|
intermediate_parallel = a1 * F.silu(a2) |
|
output = self.c_proj(intermediate_parallel) |
|
return output |
|
|
|
class QWenBlock(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
hidden_size = config.hidden_size |
|
self.bf16 = config.bf16 |
|
|
|
self.ln_1 = RMSNorm( |
|
hidden_size, |
|
eps=config.layer_norm_epsilon, |
|
) |
|
self.attn = QWenAttention(config) |
|
self.ln_2 = RMSNorm( |
|
hidden_size, |
|
eps=config.layer_norm_epsilon, |
|
) |
|
|
|
self.mlp = QWenMLP(config) |
|
|
|
def forward( |
|
self, |
|
hidden_states: Optional[Tuple[torch.FloatTensor]], |
|
rotary_pos_emb_list: Optional[List[torch.Tensor]] = None, |
|
registered_causal_mask: Optional[torch.Tensor] = None, |
|
layer_past: Optional[Tuple[torch.Tensor]] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
encoder_hidden_states: Optional[torch.Tensor] = None, |
|
encoder_attention_mask: Optional[torch.FloatTensor] = None, |
|
use_cache: Optional[bool] = False, |
|
output_attentions: Optional[bool] = False, |
|
): |
|
layernorm_output = self.ln_1(hidden_states) |
|
|
|
attn_outputs = self.attn( |
|
layernorm_output, |
|
rotary_pos_emb_list, |
|
registered_causal_mask=registered_causal_mask, |
|
layer_past=layer_past, |
|
attention_mask=attention_mask, |
|
head_mask=head_mask, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
) |
|
attn_output = attn_outputs[0] |
|
|
|
outputs = attn_outputs[1:] |
|
|
|
residual = hidden_states |
|
layernorm_input = attn_output + residual |
|
|
|
layernorm_output = self.ln_2(layernorm_input) |
|
|
|
residual = layernorm_input |
|
mlp_output = self.mlp(layernorm_output) |
|
hidden_states = residual + mlp_output |
|
|
|
if use_cache: |
|
outputs = (hidden_states,) + outputs |
|
else: |
|
outputs = (hidden_states,) + outputs[1:] |
|
|
|
return outputs |
|
|
|
|
|
class QWenPreTrainedModel(PreTrainedModel): |
|
config_class = QWenConfig |
|
base_model_prefix = "transformer" |
|
is_parallelizable = False |
|
supports_gradient_checkpointing = True |
|
_no_split_modules = ["QWenBlock"] |
|
|
|
def __init__(self, *inputs, **kwargs): |
|
super().__init__(*inputs, **kwargs) |
|
|
|
def _init_weights(self, module): |
|
"""Initialize the weights.""" |
|
if isinstance(module, nn.Linear): |
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
elif isinstance(module, RMSNorm): |
|
module.weight.data.fill_(1.0) |
|
|
|
for name, p in module.named_parameters(): |
|
if name == "c_proj.weight": |
|
p.data.normal_( |
|
mean=0.0, |
|
std=( |
|
self.config.initializer_range |
|
/ math.sqrt(2 * self.config.num_hidden_layers) |
|
), |
|
) |
|
|
|
def _set_gradient_checkpointing(self, module, value=False): |
|
if isinstance(module, QWenModel): |
|
module.gradient_checkpointing = value |
|
|
|
|
|
class QWenModel(QWenPreTrainedModel): |
|
_keys_to_ignore_on_load_missing = ["attn.masked_bias"] |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.vocab_size = config.vocab_size |
|
self.num_hidden_layers = config.num_hidden_layers |
|
self.embed_dim = config.hidden_size |
|
self.use_cache_quantization = self.config.use_cache_quantization if hasattr(self.config, 'use_cache_quantization') else False |
|
|
|
self.gradient_checkpointing = False |
|
self.use_dynamic_ntk = config.use_dynamic_ntk |
|
self.seq_length = config.seq_length |
|
|
|
self.wte = nn.Embedding(self.vocab_size, self.embed_dim) |
|
|
|
self.drop = nn.Dropout(config.emb_dropout_prob) |
|
|
|
if config.rotary_pct == 1.0: |
|
self.rotary_ndims = None |
|
else: |
|
assert config.rotary_pct < 1 |
|
self.rotary_ndims = int( |
|
config.kv_channels * config.rotary_pct |
|
) |
|
dim = ( |
|
self.rotary_ndims |
|
if self.rotary_ndims is not None |
|
else config.kv_channels |
|
) |
|
self.rotary_emb = RotaryEmbedding(dim, base=config.rotary_emb_base) |
|
|
|
self.use_flash_attn = config.use_flash_attn |
|
self.is_fp32 = not (config.bf16 or config.fp16) |
|
if ( |
|
self.use_flash_attn |
|
and flash_attn_unpadded_func is not None |
|
and not self.is_fp32 |
|
): |
|
self.registered_causal_mask = None |
|
else: |
|
max_positions = config.max_position_embeddings |
|
self.register_buffer( |
|
"registered_causal_mask", |
|
torch.tril( |
|
torch.ones((max_positions, max_positions), dtype=torch.bool) |
|
).view(1, 1, max_positions, max_positions), |
|
persistent=False, |
|
) |
|
|
|
self.h = nn.ModuleList( |
|
[ |
|
QWenBlock( |
|
config |
|
) |
|
for i in range(config.num_hidden_layers) |
|
] |
|
) |
|
self.ln_f = RMSNorm( |
|
self.embed_dim, |
|
eps=config.layer_norm_epsilon, |
|
) |
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.wte |
|
|
|
def set_input_embeddings(self, new_embeddings): |
|
self.wte = new_embeddings |
|
|
|
def get_ntk_alpha(self, true_seq_len): |
|
context_value = math.log(true_seq_len / self.seq_length, 2) + 1 |
|
ntk_alpha = 2 ** math.ceil(context_value) - 1 |
|
ntk_alpha = max(ntk_alpha, 1) |
|
return ntk_alpha |
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
token_type_ids: Optional[torch.LongTensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
encoder_hidden_states: Optional[torch.Tensor] = None, |
|
encoder_attention_mask: Optional[torch.FloatTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
): |
|
output_attentions = ( |
|
output_attentions |
|
if output_attentions is not None |
|
else self.config.output_attentions |
|
) |
|
output_hidden_states = ( |
|
output_hidden_states |
|
if output_hidden_states is not None |
|
else self.config.output_hidden_states |
|
) |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
return_dict = ( |
|
return_dict if return_dict is not None else self.config.use_return_dict |
|
) |
|
|
|
if input_ids is not None and inputs_embeds is not None: |
|
raise ValueError( |
|
"You cannot specify both input_ids and inputs_embeds at the same time" |
|
) |
|
elif input_ids is not None: |
|
input_shape = input_ids.size() |
|
input_ids = input_ids.view(-1, input_shape[-1]) |
|
batch_size = input_ids.shape[0] |
|
elif inputs_embeds is not None: |
|
input_shape = inputs_embeds.size()[:-1] |
|
batch_size = inputs_embeds.shape[0] |
|
else: |
|
raise ValueError("You have to specify either input_ids or inputs_embeds") |
|
|
|
device = input_ids.device if input_ids is not None else inputs_embeds.device |
|
|
|
if token_type_ids is not None: |
|
token_type_ids = token_type_ids.view(-1, input_shape[-1]) |
|
if position_ids is not None: |
|
position_ids = position_ids.view(-1, input_shape[-1]) |
|
|
|
if past_key_values is None: |
|
past_length = 0 |
|
past_key_values = tuple([None] * len(self.h)) |
|
else: |
|
if self.use_cache_quantization: |
|
past_length = past_key_values[0][0][0].size(2) |
|
else: |
|
past_length = past_key_values[0][0].size(-2) |
|
if position_ids is None: |
|
position_ids = torch.arange( |
|
past_length, |
|
input_shape[-1] + past_length, |
|
dtype=torch.long, |
|
device=device, |
|
) |
|
position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1]) |
|
|
|
if attention_mask is not None: |
|
if batch_size <= 0: |
|
raise ValueError("batch_size has to be defined and > 0") |
|
attention_mask = attention_mask.view(batch_size, -1) |
|
attention_mask = attention_mask[:, None, None, :] |
|
attention_mask = attention_mask.to(dtype=self.dtype) |
|
attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min |
|
|
|
encoder_attention_mask = None |
|
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.wte(input_ids) |
|
hidden_states = inputs_embeds |
|
|
|
kv_seq_len = hidden_states.size()[1] |
|
if past_key_values[0] is not None: |
|
|
|
if self.use_cache_quantization: |
|
kv_seq_len += past_key_values[0][0][0].shape[2] |
|
else: |
|
kv_seq_len += past_key_values[0][0].shape[1] |
|
|
|
if self.training or not self.use_dynamic_ntk: |
|
ntk_alpha_list = [1.0] |
|
elif kv_seq_len != hidden_states.size()[1]: |
|
ntk_alpha_list = self.rotary_emb._ntk_alpha_cached_list |
|
else: |
|
ntk_alpha_list = [] |
|
if attention_mask is not None and kv_seq_len > self.seq_length: |
|
true_seq_lens = attention_mask.squeeze(1).squeeze(1).eq(0).sum(dim=-1, dtype=torch.int32) |
|
for i in range(hidden_states.size()[0]): |
|
true_seq_len = true_seq_lens[i].item() |
|
ntk_alpha = self.get_ntk_alpha(true_seq_len) |
|
ntk_alpha_list.append(ntk_alpha) |
|
else: |
|
ntk_alpha = self.get_ntk_alpha(kv_seq_len) |
|
ntk_alpha_list.append(ntk_alpha) |
|
self.rotary_emb._ntk_alpha_cached_list = ntk_alpha_list |
|
|
|
rotary_pos_emb_list = [] |
|
for ntk_alpha in ntk_alpha_list: |
|
rotary_pos_emb = self.rotary_emb(kv_seq_len, ntk_alpha=ntk_alpha) |
|
rotary_pos_emb_list.append(rotary_pos_emb) |
|
|
|
hidden_states = self.drop(hidden_states) |
|
output_shape = input_shape + (hidden_states.size(-1),) |
|
|
|
if self.gradient_checkpointing and self.training: |
|
if use_cache: |
|
logger.warning_once( |
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." |
|
) |
|
use_cache = False |
|
|
|
presents = () if use_cache else None |
|
all_self_attentions = () if output_attentions else None |
|
all_hidden_states = () if output_hidden_states else None |
|
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)): |
|
|
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
if self.gradient_checkpointing and self.training: |
|
|
|
def create_custom_forward(module): |
|
def custom_forward(*inputs): |
|
|
|
return module(*inputs, use_cache, output_attentions) |
|
|
|
return custom_forward |
|
|
|
outputs = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(block), |
|
hidden_states, |
|
rotary_pos_emb_list, |
|
self.registered_causal_mask, |
|
None, |
|
attention_mask, |
|
head_mask[i], |
|
encoder_hidden_states, |
|
encoder_attention_mask, |
|
) |
|
else: |
|
outputs = block( |
|
hidden_states, |
|
layer_past=layer_past, |
|
rotary_pos_emb_list=rotary_pos_emb_list, |
|
registered_causal_mask=self.registered_causal_mask, |
|
attention_mask=attention_mask, |
|
head_mask=head_mask[i], |
|
encoder_hidden_states=encoder_hidden_states, |
|
encoder_attention_mask=encoder_attention_mask, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
) |
|
|
|
hidden_states = outputs[0] |
|
if use_cache is True: |
|
presents = presents + (outputs[1],) |
|
|
|
if output_attentions: |
|
all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],) |
|
|
|
hidden_states = self.ln_f(hidden_states) |
|
hidden_states = hidden_states.view(output_shape) |
|
|
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
if not return_dict: |
|
return tuple( |
|
v for v in [hidden_states, presents, all_hidden_states] if v is not None |
|
) |
|
|
|
return BaseModelOutputWithPast( |
|
last_hidden_state=hidden_states, |
|
past_key_values=presents, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attentions, |
|
) |
|
|
|
|
|
class QWenLMHeadModel(QWenPreTrainedModel): |
|
_keys_to_ignore_on_load_missing = [r"h\.\d+\.attn\.rotary_emb\.inv_freq"] |
|
_keys_to_ignore_on_load_unexpected = [r"h\.\d+\.attn\.masked_bias"] |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
assert ( |
|
config.bf16 + config.fp16 + config.fp32 <= 1 |
|
), "Only one of \"bf16\", \"fp16\", \"fp32\" can be true" |
|
logger.warn( |
|
"Warning: please make sure that you are using the latest codes and checkpoints, " |
|
"especially if you used Qwen-7B before 09.25.2023." |
|
"请使用最新模型和代码,尤其如果你在9月25日前已经开始使用Qwen-7B,千万注意不要使用错误代码和模型。" |
|
) |
|
|
|
autoset_precision = config.bf16 + config.fp16 + config.fp32 == 0 |
|
|
|
if autoset_precision: |
|
if SUPPORT_BF16: |
|
logger.warn( |
|
"The model is automatically converting to bf16 for faster inference. " |
|
"If you want to disable the automatic precision, please manually add bf16/fp16/fp32=True to \"AutoModelForCausalLM.from_pretrained\"." |
|
) |
|
config.bf16 = True |
|
elif SUPPORT_FP16: |
|
logger.warn( |
|
"The model is automatically converting to fp16 for faster inference. " |
|
"If you want to disable the automatic precision, please manually add bf16/fp16/fp32=True to \"AutoModelForCausalLM.from_pretrained\"." |
|
) |
|
config.fp16 = True |
|
else: |
|
config.fp32 = True |
|
|
|
if config.bf16 and SUPPORT_CUDA and not SUPPORT_BF16: |
|
logger.warn("Your device does NOT seem to support bf16, you can switch to fp16 or fp32 by by passing fp16/fp32=True in \"AutoModelForCausalLM.from_pretrained\".") |
|
if config.fp16 and SUPPORT_CUDA and not SUPPORT_FP16: |
|
logger.warn("Your device does NOT support faster inference with fp16, please switch to fp32 which is likely to be faster") |
|
if config.fp32: |
|
if SUPPORT_BF16: |
|
logger.warn("Your device support faster inference by passing bf16=True in \"AutoModelForCausalLM.from_pretrained\".") |
|
elif SUPPORT_FP16: |
|
logger.warn("Your device support faster inference by passing fp16=True in \"AutoModelForCausalLM.from_pretrained\".") |
|
|
|
if config.use_flash_attn == "auto": |
|
if config.bf16 or config.fp16: |
|
logger.warn("Try importing flash-attention for faster inference...") |
|
config.use_flash_attn = True |
|
else: |
|
config.use_flash_attn = False |
|
if config.use_flash_attn and config.fp32: |
|
logger.warn("Flash attention will be disabled because it does NOT support fp32.") |
|
|
|
if config.use_flash_attn: |
|
_import_flash_attn() |
|
|
|
self.transformer = QWenModel(config) |
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
|
|
if config.bf16: |
|
self.transformer.bfloat16() |
|
self.lm_head.bfloat16() |
|
if config.fp16: |
|
self.transformer.half() |
|
self.lm_head.half() |
|
self.post_init() |
|
|
|
|
|
def get_output_embeddings(self): |
|
return self.lm_head |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.lm_head = new_embeddings |
|
|
|
def prepare_inputs_for_generation( |
|
self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs |
|
): |
|
token_type_ids = kwargs.get("token_type_ids", None) |
|
if past_key_values: |
|
input_ids = input_ids[:, -1].unsqueeze(-1) |
|
if token_type_ids is not None: |
|
token_type_ids = token_type_ids[:, -1].unsqueeze(-1) |
|
|
|
attention_mask = kwargs.get("attention_mask", None) |
|
position_ids = kwargs.get("position_ids", None) |
|
|
|
if attention_mask is not None and position_ids is None: |
|
position_ids = attention_mask.long().cumsum(-1) - 1 |
|
position_ids.masked_fill_(attention_mask == 0, 1) |
|
if past_key_values: |
|
position_ids = position_ids[:, -1].unsqueeze(-1) |
|
else: |
|
position_ids = None |
|
|
|
if inputs_embeds is not None and past_key_values is None: |
|
model_inputs = {"inputs_embeds": inputs_embeds} |
|
else: |
|
model_inputs = {"input_ids": input_ids} |
|
|
|
model_inputs.update( |
|
{ |
|
"past_key_values": past_key_values, |
|
"use_cache": kwargs.get("use_cache"), |
|
"position_ids": position_ids, |
|
"attention_mask": attention_mask, |
|
"token_type_ids": token_type_ids, |
|
} |
|
) |
|
return model_inputs |
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
token_type_ids: Optional[torch.LongTensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
encoder_hidden_states: Optional[torch.Tensor] = None, |
|
encoder_attention_mask: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, CausalLMOutputWithPast]: |
|
|
|
return_dict = ( |
|
return_dict if return_dict is not None else self.config.use_return_dict |
|
) |
|
|
|
transformer_outputs = self.transformer( |
|
input_ids, |
|
past_key_values=past_key_values, |
|
attention_mask=attention_mask, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
encoder_hidden_states=encoder_hidden_states, |
|
encoder_attention_mask=encoder_attention_mask, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
hidden_states = transformer_outputs[0] |
|
|
|
lm_logits = self.lm_head(hidden_states) |
|
|
|
loss = None |
|
if labels is not None: |
|
labels = labels.to(lm_logits.device) |
|
shift_logits = lm_logits[..., :-1, :].contiguous() |
|
shift_labels = labels[..., 1:].contiguous() |
|
loss_fct = CrossEntropyLoss() |
|
loss = loss_fct( |
|
shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1) |
|
) |
|
|
|
if not return_dict: |
|
output = (lm_logits,) + transformer_outputs[1:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return CausalLMOutputWithPast( |
|
loss=loss, |
|
logits=lm_logits, |
|
past_key_values=transformer_outputs.past_key_values, |
|
hidden_states=transformer_outputs.hidden_states, |
|
attentions=transformer_outputs.attentions, |
|
) |
|
|
|
@staticmethod |
|
def _reorder_cache( |
|
past_key_values: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor |
|
) -> Tuple[Tuple[torch.Tensor]]: |
|
|
|
return tuple( |
|
tuple( |
|
past_state.index_select(0, beam_idx.to(past_state.device)) |
|
for past_state in layer_past |
|
) |
|
for layer_past in past_key_values |
|
) |
|
|
|
def chat( |
|
self, |
|
tokenizer: PreTrainedTokenizer, |
|
query: str, |
|
history: Optional[HistoryType], |
|
system: str = "You are a helpful assistant.", |
|
append_history: bool = True, |
|
stream: Optional[bool] = _SENTINEL, |
|
stop_words_ids: Optional[List[List[int]]] = None, |
|
generation_config: Optional[GenerationConfig] = None, |
|
**kwargs, |
|
) -> Tuple[str, HistoryType]: |
|
generation_config = generation_config if generation_config is not None else self.generation_config |
|
|
|
assert stream is _SENTINEL, _ERROR_STREAM_IN_CHAT |
|
assert generation_config.chat_format == 'chatml', _ERROR_BAD_CHAT_FORMAT |
|
if history is None: |
|
history = [] |
|
if stop_words_ids is None: |
|
stop_words_ids = [] |
|
|
|
max_window_size = kwargs.get('max_window_size', None) |
|
if max_window_size is None: |
|
max_window_size = generation_config.max_window_size |
|
raw_text, context_tokens = make_context( |
|
tokenizer, |
|
query, |
|
history=history, |
|
system=system, |
|
max_window_size=max_window_size, |
|
chat_format=generation_config.chat_format, |
|
) |
|
|
|
stop_words_ids.extend(get_stop_words_ids( |
|
generation_config.chat_format, tokenizer |
|
)) |
|
input_ids = torch.tensor([context_tokens]).to(self.device) |
|
outputs = self.generate( |
|
input_ids, |
|
stop_words_ids=stop_words_ids, |
|
return_dict_in_generate=False, |
|
generation_config=generation_config, |
|
**kwargs, |
|
) |
|
|
|
response = decode_tokens( |
|
outputs[0], |
|
tokenizer, |
|
raw_text_len=len(raw_text), |
|
context_length=len(context_tokens), |
|
chat_format=generation_config.chat_format, |
|
verbose=False, |
|
errors='replace' |
|
) |
|
|
|
if append_history: |
|
history.append((query, response)) |
|
|
|
return response, history |
|
|
|
def chat_stream( |
|
self, |
|
tokenizer: PreTrainedTokenizer, |
|
query: str, |
|
history: Optional[HistoryType], |
|
system: str = "You are a helpful assistant.", |
|
stop_words_ids: Optional[List[List[int]]] = None, |
|
logits_processor: Optional[LogitsProcessorList] = None, |
|
generation_config: Optional[GenerationConfig] = None, |
|
**kwargs, |
|
) -> Generator[str, Any, None]: |
|
generation_config = generation_config if generation_config is not None else self.generation_config |
|
assert generation_config.chat_format == 'chatml', _ERROR_BAD_CHAT_FORMAT |
|
if history is None: |
|
history = [] |
|
if stop_words_ids is None: |
|
stop_words_ids = [] |
|
|
|
max_window_size = kwargs.get('max_window_size', None) |
|
if max_window_size is None: |
|
max_window_size = generation_config.max_window_size |
|
raw_text, context_tokens = make_context( |
|
tokenizer, |
|
query, |
|
history=history, |
|
system=system, |
|
max_window_size=max_window_size, |
|
chat_format=generation_config.chat_format, |
|
) |
|
|
|
stop_words_ids.extend(get_stop_words_ids( |
|
generation_config.chat_format, tokenizer |
|
)) |
|
if stop_words_ids is not None: |
|
stop_words_logits_processor = StopWordsLogitsProcessor( |
|
stop_words_ids=stop_words_ids, |
|
eos_token_id=generation_config.eos_token_id, |
|
) |
|
if logits_processor is None: |
|
logits_processor = LogitsProcessorList([stop_words_logits_processor]) |
|
else: |
|
logits_processor.append(stop_words_logits_processor) |
|
input_ids = torch.tensor([context_tokens]).to(self.device) |
|
|
|
from transformers_stream_generator.main import NewGenerationMixin, StreamGenerationConfig |
|
self.__class__.generate_stream = NewGenerationMixin.generate |
|
self.__class__.sample_stream = NewGenerationMixin.sample_stream |
|
stream_config = StreamGenerationConfig(**generation_config.to_dict(), do_stream=True) |
|
|
|
def stream_generator(): |
|
outputs = [] |
|
for token in self.generate_stream( |
|
input_ids, |
|
return_dict_in_generate=False, |
|
generation_config=stream_config, |
|
logits_processor=logits_processor, |
|
seed=-1, |
|
**kwargs): |
|
outputs.append(token.item()) |
|
yield tokenizer.decode(outputs, skip_special_tokens=True, errors='ignore') |
|
|
|
return stream_generator() |
|
|
|
def generate( |
|
self, |
|
inputs: Optional[torch.Tensor] = None, |
|
generation_config: Optional[GenerationConfig] = None, |
|
logits_processor: Optional[LogitsProcessorList] = None, |
|
stopping_criteria: Optional[StoppingCriteriaList] = None, |
|
prefix_allowed_tokens_fn: Optional[ |
|
Callable[[int, torch.Tensor], List[int]] |
|
] = None, |
|
synced_gpus: Optional[bool] = None, |
|
assistant_model: Optional["PreTrainedModel"] = None, |
|
streamer: Optional["BaseStreamer"] = None, |
|
**kwargs, |
|
) -> Union[GenerateOutput, torch.LongTensor]: |
|
generation_config = generation_config if generation_config is not None else self.generation_config |
|
|
|
|
|
stop_words_ids = kwargs.pop("stop_words_ids", None) |
|
if stop_words_ids is None and generation_config is not None: |
|
stop_words_ids = getattr(generation_config, "stop_words_ids", None) |
|
if stop_words_ids is None: |
|
stop_words_ids = getattr(generation_config, "stop_words_ids", None) |
|
|
|
if stop_words_ids is not None: |
|
stop_words_logits_processor = StopWordsLogitsProcessor( |
|
stop_words_ids=stop_words_ids, |
|
eos_token_id=generation_config.eos_token_id, |
|
) |
|
if logits_processor is None: |
|
logits_processor = LogitsProcessorList([stop_words_logits_processor]) |
|
else: |
|
logits_processor.append(stop_words_logits_processor) |
|
|
|
return super().generate( |
|
inputs, |
|
generation_config=generation_config, |
|
logits_processor=logits_processor, |
|
stopping_criteria=stopping_criteria, |
|
prefix_allowed_tokens_fn=prefix_allowed_tokens_fn, |
|
synced_gpus=synced_gpus, |
|
assistant_model=assistant_model, |
|
streamer=streamer, |
|
**kwargs, |
|
) |
|
|
|
|
|
class RotaryEmbedding(torch.nn.Module): |
|
def __init__(self, dim, base=10000): |
|
super().__init__() |
|
self.dim = dim |
|
self.base = base |
|
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float() / dim)) |
|
self.register_buffer("inv_freq", inv_freq, persistent=False) |
|
if importlib.util.find_spec("einops") is None: |
|
raise RuntimeError("einops is required for Rotary Embedding") |
|
|
|
self._rotary_pos_emb_cache = None |
|
self._seq_len_cached = 0 |
|
self._ntk_alpha_cached = 1.0 |
|
self._ntk_alpha_cached_list = [1.0] |
|
|
|
def update_rotary_pos_emb_cache(self, max_seq_len, offset=0, ntk_alpha=1.0): |
|
seqlen = max_seq_len + offset |
|
if seqlen > self._seq_len_cached or ntk_alpha != self._ntk_alpha_cached: |
|
base = self.base * ntk_alpha ** (self.dim / (self.dim - 2)) |
|
self.inv_freq = 1.0 / ( |
|
base |
|
** ( |
|
torch.arange(0, self.dim, 2, device=self.inv_freq.device).float() |
|
/ self.dim |
|
) |
|
) |
|
self._seq_len_cached = max(2 * seqlen, 16) |
|
self._ntk_alpha_cached = ntk_alpha |
|
seq = torch.arange(self._seq_len_cached, device=self.inv_freq.device) |
|
freqs = torch.outer(seq.type_as(self.inv_freq), self.inv_freq) |
|
|
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
from einops import rearrange |
|
|
|
emb = rearrange(emb, "n d -> 1 n 1 d") |
|
|
|
cos, sin = emb.cos(), emb.sin() |
|
self._rotary_pos_emb_cache = [cos, sin] |
|
|
|
def forward(self, max_seq_len, offset=0, ntk_alpha=1.0): |
|
self.update_rotary_pos_emb_cache(max_seq_len, offset, ntk_alpha) |
|
cos, sin = self._rotary_pos_emb_cache |
|
return [cos[:, offset : offset + max_seq_len], sin[:, offset : offset + max_seq_len]] |
|
|
|
|
|
def _rotate_half(x): |
|
from einops import rearrange |
|
|
|
x = rearrange(x, "... (j d) -> ... j d", j=2) |
|
x1, x2 = x.unbind(dim=-2) |
|
return torch.cat((-x2, x1), dim=-1) |
|
|
|
|
|
def apply_rotary_pos_emb(t, freqs): |
|
cos, sin = freqs |
|
if apply_rotary_emb_func is not None and t.is_cuda: |
|
t_ = t.float() |
|
cos = cos.squeeze(0).squeeze(1)[:, : cos.shape[-1] // 2] |
|
sin = sin.squeeze(0).squeeze(1)[:, : sin.shape[-1] // 2] |
|
output = apply_rotary_emb_func(t_, cos, sin).type_as(t) |
|
return output |
|
else: |
|
rot_dim = freqs[0].shape[-1] |
|
cos, sin = freqs |
|
t_, t_pass_ = t[..., :rot_dim], t[..., rot_dim:] |
|
t_ = t_.float() |
|
t_pass_ = t_pass_.float() |
|
t_ = (t_ * cos) + (_rotate_half(t_) * sin) |
|
return torch.cat((t_, t_pass_), dim=-1).type_as(t) |
|
|
|
|
|
class RMSNorm(torch.nn.Module): |
|
def __init__(self, dim: int, eps: float = 1e-6): |
|
super().__init__() |
|
self.eps = eps |
|
self.weight = nn.Parameter(torch.ones(dim)) |
|
|
|
def _norm(self, x): |
|
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps) |
|
|
|
def forward(self, x): |
|
if rms_norm is not None and x.is_cuda: |
|
return rms_norm(x, self.weight, self.eps) |
|
else: |
|
output = self._norm(x.float()).type_as(x) |
|
return output * self.weight |
|
|