|
|
|
|
|
|
|
|
|
|
|
"""Tokenization classes for QWen.""" |
|
|
|
from __future__ import absolute_import, division, print_function, unicode_literals |
|
|
|
import json |
|
import logging |
|
import os |
|
import unicodedata |
|
from io import open |
|
import base64 |
|
import tiktoken |
|
from typing import List, Optional, Tuple, Union |
|
|
|
from transformers import PreTrainedTokenizer, AddedToken |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
VOCAB_FILES_NAMES = {"vocab_file": "qwen.tiktoken"} |
|
|
|
|
|
class QWenTokenizer(PreTrainedTokenizer): |
|
"""QWen tokenizer.""" |
|
|
|
"""NOTE: This tokenizer will not handle special tokens to avoid injection attacks""" |
|
|
|
vocab_files_names = VOCAB_FILES_NAMES |
|
|
|
def __init__( |
|
self, |
|
vocab_file, |
|
errors="replace", |
|
max_len=None, |
|
unk_token="<|endoftext|>", |
|
bos_token="<|endoftext|>", |
|
eos_token="<|endoftext|>", |
|
pad_token=None, |
|
add_prefix_space=False, |
|
add_bos_token=False, |
|
add_more_sp_tokens=True, |
|
**kwargs, |
|
): |
|
bos_token = ( |
|
AddedToken(bos_token, lstrip=False, rstrip=False) |
|
if isinstance(bos_token, str) |
|
else bos_token |
|
) |
|
eos_token = ( |
|
AddedToken(eos_token, lstrip=False, rstrip=False) |
|
if isinstance(eos_token, str) |
|
else eos_token |
|
) |
|
unk_token = ( |
|
AddedToken(unk_token, lstrip=False, rstrip=False) |
|
if isinstance(unk_token, str) |
|
else unk_token |
|
) |
|
pad_token = ( |
|
AddedToken(pad_token, lstrip=False, rstrip=False) |
|
if isinstance(pad_token, str) |
|
else pad_token |
|
) |
|
super().__init__( |
|
errors=errors, |
|
unk_token=unk_token, |
|
bos_token=bos_token, |
|
eos_token=eos_token, |
|
pad_token=pad_token, |
|
add_prefix_space=add_prefix_space, |
|
add_bos_token=add_bos_token, |
|
) |
|
self.add_bos_token = add_bos_token |
|
self.max_len = max_len if max_len is not None else int(1e12) |
|
|
|
self.errors = errors |
|
|
|
name = "QWen" |
|
ENDOFTEXT = "<|endoftext|>" |
|
IMSTART = "<|im_start|>" |
|
IMEND = "<|im_end|>" |
|
if add_more_sp_tokens: |
|
special_tokens = ( |
|
ENDOFTEXT, |
|
IMSTART, |
|
IMEND, |
|
"<R>", |
|
"<S>", |
|
"<X>", |
|
"<mask>", |
|
"<sep>", |
|
) + tuple([f"<extra_{i}>" for i in range(200)]) |
|
else: |
|
special_tokens = (ENDOFTEXT, IMSTART, IMEND) |
|
|
|
PAT_STR = r"""(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+""" |
|
|
|
def load_tiktoken_bpe(tiktoken_bpe_file: str) -> "dict[bytes, int]": |
|
contents = open(tiktoken_bpe_file, "rb").read() |
|
return { |
|
base64.b64decode(token): int(rank) |
|
for token, rank in ( |
|
line.split() for line in contents.splitlines() if line |
|
) |
|
} |
|
|
|
mergeable_ranks = load_tiktoken_bpe(vocab_file) |
|
special_tokens = { |
|
token: index |
|
for index, token in enumerate(special_tokens, start=len(mergeable_ranks)) |
|
} |
|
self.special_tokens = special_tokens |
|
enc = tiktoken.Encoding( |
|
name, |
|
pat_str=PAT_STR, |
|
mergeable_ranks=mergeable_ranks, |
|
special_tokens=special_tokens, |
|
) |
|
assert ( |
|
len(mergeable_ranks) + len(special_tokens) == enc.n_vocab |
|
), f"{len(mergeable_ranks) + len(special_tokens)} != {enc.n_vocab} in encoding" |
|
|
|
self.mergeable_ranks = mergeable_ranks |
|
self.encoder = self.mergeable_ranks |
|
self.decoder = {v: k for k, v in self.encoder.items()} |
|
self.tokenizer = enc |
|
self.eod_id = self.tokenizer.eot_token |
|
self.im_start_id = special_tokens[IMSTART] |
|
self.im_end_id = special_tokens[IMEND] |
|
|
|
def __len__(self): |
|
return self.tokenizer.n_vocab |
|
|
|
def get_vocab(self): |
|
return self.mergeable_ranks |
|
|
|
def convert_tokens_to_ids(self, tokens): |
|
ids = [] |
|
|
|
if isinstance(tokens, str): |
|
if tokens in self.special_tokens: |
|
return self.special_tokens[tokens] |
|
else: |
|
return self.encoder.get(tokens) |
|
for token in tokens: |
|
if token in self.special_tokens: |
|
ids.append(self.special_tokens[token]) |
|
else: |
|
ids.append(self.encoder.get(token)) |
|
if len(ids) > self.max_len: |
|
logger.warning( |
|
"Token indices sequence length is longer than the specified maximum " |
|
" sequence length for this OpenAI GPT model ({} > {}). Running this" |
|
" sequence through the model will result in indexing errors".format( |
|
len(ids), self.max_len |
|
) |
|
) |
|
return ids |
|
|
|
def save_vocabulary(self, save_directory: str) -> Tuple[str]: |
|
""" |
|
Save only the vocabulary of the tokenizer (vocabulary + added tokens). |
|
|
|
Returns: |
|
`Tuple(str)`: Paths to the files saved. |
|
""" |
|
file_path = os.path.join(save_directory, "qwen.tiktoken") |
|
with open(file_path, "w", encoding="utf8") as w: |
|
for k, v in self.mergeable_ranks.items(): |
|
line = base64.b64encode(k).decode("utf8") + " " + str(v) + "\n" |
|
w.write(line) |
|
return (file_path,) |
|
|
|
def tokenize(self, text: str, **kwargs) -> List[str]: |
|
""" |
|
Converts a string in a sequence of tokens, replacing unknown tokens with the `unk_token`. |
|
|
|
Args: |
|
text (`str`): |
|
The sequence to be encoded. |
|
pair (`str`, *optional*): |
|
A second sequence to be encoded with the first. |
|
add_special_tokens (`bool`, *optional*, defaults to `False`): |
|
Whether or not to add the special tokens associated with the corresponding model. |
|
kwargs (additional keyword arguments, *optional*): |
|
Will be passed to the underlying model specific encode method. See details in |
|
[`~PreTrainedTokenizerBase.__call__`] |
|
|
|
Returns: |
|
`List[str]`: The list of tokens. |
|
""" |
|
tokens = [] |
|
text = unicodedata.normalize("NFC", text) |
|
for t in self.tokenizer.encode_ordinary(text): |
|
tokens.append(self.decoder[t]) |
|
return tokens |
|
|
|
def convert_tokens_to_string(self, tokens: List[str]) -> str: |
|
""" |
|
Converts a sequence of tokens in a single string. The most simple way to do it is `" ".join(tokens)` but we |
|
often want to remove sub-word tokenization artifacts at the same time. |
|
""" |
|
text = "".join(tokens) |
|
text = bytearray([self.byte_decoder[c] for c in text]).decode( |
|
"utf-8", errors=self.errors |
|
) |
|
return text |
|
|
|
@property |
|
def vocab_size(self): |
|
return self.tokenizer.n_vocab |
|
|
|
def _convert_id_to_token(self, index: int) -> str: |
|
raise NotImplementedError |
|
|
|
def _tokenize(self, text, **kwargs): |
|
""" |
|
Converts a string in a sequence of tokens (string), using the tokenizer. Split in words for word-based |
|
vocabulary or sub-words for sub-word-based vocabularies (BPE/SentencePieces/WordPieces). |
|
|
|
Do NOT take care of added tokens. |
|
""" |
|
raise NotImplementedError |
|
|
|
def _decode( |
|
self, |
|
token_ids: Union[int, List[int]], |
|
skip_special_tokens: bool = False, |
|
clean_up_tokenization_spaces: bool = None, |
|
**kwargs, |
|
) -> str: |
|
if isinstance(token_ids, int): |
|
token_ids = [token_ids] |
|
return self.tokenizer.decode(token_ids) |
|
|