|
#define _CRT_SECURE_NO_WARNINGS |
|
#include <torch/all.h> |
|
#include <torch/python.h> |
|
#include <cuda.h> |
|
#include <cuda_runtime.h> |
|
#include <cuda_fp16.h> |
|
#include <stdint.h> |
|
|
|
#if (defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 700) || defined(USE_ROCM) |
|
|
|
__device__ __forceinline__ void atomicAdd(c10::Half* address, c10::Half val) { |
|
unsigned int *address_as_ui = reinterpret_cast<unsigned int *>(reinterpret_cast<char *>(address) - (reinterpret_cast<size_t>(address) & 2)); |
|
unsigned int old = *address_as_ui; |
|
unsigned int assumed; |
|
|
|
do { |
|
assumed = old; |
|
unsigned short hsum = reinterpret_cast<size_t>(address) & 2 ? (old >> 16) : (old & 0xffff); |
|
hsum += val; |
|
old = reinterpret_cast<size_t>(address) & 2 |
|
? (old & 0xffff) | (hsum << 16) |
|
: (old & 0xffff0000) | hsum; |
|
old = atomicCAS(address_as_ui, assumed, old); |
|
|
|
|
|
} while (assumed != old); |
|
} |
|
__device__ __forceinline__ void atomicAdd(__half* address, c10::Half val) { |
|
unsigned int * address_as_ui = (unsigned int *) ((char *)address - ((size_t)address & 2)); |
|
unsigned int old = *address_as_ui; |
|
unsigned int assumed; |
|
|
|
do { |
|
assumed = old; |
|
__half_raw hsum; |
|
hsum.x = (size_t)address & 2 ? (old >> 16) : (old & 0xffff); |
|
half tmpres = __hadd(hsum, val); |
|
hsum = __half_raw(tmpres); |
|
old = (size_t)address & 2 ? (old & 0xffff) | (hsum.x << 16) : (old & 0xffff0000) | hsum.x; |
|
old = atomicCAS(address_as_ui, assumed, old); |
|
} while (assumed != old); |
|
} |
|
#endif |
|
|
|
template <typename scalar_t> |
|
__global__ void VecQuant8MatMulKernel( |
|
const scalar_t* __restrict__ vec, |
|
const int* __restrict__ mat, |
|
scalar_t* __restrict__ mul, |
|
const scalar_t* __restrict__ scales, |
|
const int* __restrict__ zeros, |
|
const int* __restrict__ g_idx, |
|
int batch, |
|
int vec_height, |
|
int height, |
|
int width, |
|
int zero_width |
|
); |
|
|
|
template <typename scalar_t> |
|
__global__ void VecQuant8BatchMatMulColumnCompressionKernel( |
|
const scalar_t* __restrict__ vec, |
|
const int* __restrict__ mat, |
|
scalar_t* __restrict__ mul, |
|
const scalar_t* __restrict__ scales, |
|
const int* __restrict__ zeros, |
|
int batch, |
|
int heads, |
|
int vec_row, |
|
int height, |
|
int width |
|
); |
|
|
|
template <typename scalar_t> |
|
__global__ void VecQuant4BatchMatMulColumnCompressionKernel( |
|
const scalar_t* __restrict__ vec, |
|
const int* __restrict__ mat, |
|
scalar_t* __restrict__ mul, |
|
const scalar_t* __restrict__ scales, |
|
const int* __restrict__ zeros, |
|
int batch, |
|
int heads, |
|
int vec_row, |
|
int height, |
|
int width |
|
); |
|
|
|
template <typename scalar_t> |
|
__global__ void VecQuant8BatchMatMulKernel( |
|
const scalar_t* __restrict__ vec, |
|
const int* __restrict__ mat, |
|
scalar_t* __restrict__ mul, |
|
const scalar_t* __restrict__ scales, |
|
const int* __restrict__ zeros, |
|
int batch, |
|
int heads, |
|
int vec_row, |
|
int vec_height, |
|
int height, |
|
int width, |
|
int zero_width |
|
); |
|
|
|
template <typename scalar_t> |
|
__global__ void VecQuant4BatchMatMulKernel( |
|
const scalar_t* __restrict__ vec, |
|
const int* __restrict__ mat, |
|
scalar_t* __restrict__ mul, |
|
const scalar_t* __restrict__ scales, |
|
const int* __restrict__ zeros, |
|
int batch, |
|
int heads, |
|
int vec_row, |
|
int vec_height, |
|
int height, |
|
int width, |
|
int zero_width |
|
); |
|
|
|
|
|
|
|
template <typename scalar_t> |
|
__global__ void VecQuant8BatchMatMulKernel_old( |
|
const scalar_t* __restrict__ vec, |
|
const uint8_t* __restrict__ mat, |
|
scalar_t* __restrict__ mul, |
|
const scalar_t* __restrict__ scales, |
|
const scalar_t* __restrict__ zeros, |
|
int batch, |
|
int heads, |
|
int vec_row, |
|
int vec_height, |
|
int height, |
|
int width, |
|
int zero_width |
|
); |
|
|
|
__global__ void VecQuant8BatchMatMulKernel_faster( |
|
const half* __restrict__ vec, |
|
const uint8_t* __restrict__ mat, |
|
half* __restrict__ mul, |
|
const half* __restrict__ scales, |
|
const half* __restrict__ zeros, |
|
int batch, |
|
int heads, |
|
int vec_row, |
|
int vec_height, |
|
int height, |
|
int width, |
|
int zero_width |
|
); |
|
|
|
|
|
|
|
__global__ void VecQuant8BatchMatMulKernel_faster_old( |
|
const half* __restrict__ vec, |
|
const uint8_t* __restrict__ mat, |
|
half* __restrict__ mul, |
|
const half* __restrict__ scales, |
|
const half* __restrict__ zeros, |
|
int batch, |
|
int heads, |
|
int vec_row, |
|
int vec_height, |
|
int height, |
|
int width |
|
); |
|
|
|
|
|
template <typename scalar_t> |
|
__global__ void VecQuant4BatchMatMulKernel_old( |
|
const scalar_t* __restrict__ vec, |
|
const uint8_t* __restrict__ mat, |
|
scalar_t* __restrict__ mul, |
|
const scalar_t* __restrict__ scales, |
|
const scalar_t* __restrict__ zeros, |
|
int batch, |
|
int heads, |
|
int vec_row, |
|
int vec_height, |
|
int height, |
|
int width, |
|
int zero_width |
|
); |
|
|
|
|
|
template <typename scalar_t> |
|
__global__ void VecQuant8BatchMatMulColumnCompressionKernel_old( |
|
const scalar_t* __restrict__ vec, |
|
const uint8_t* __restrict__ mat, |
|
scalar_t* __restrict__ mul, |
|
const scalar_t* __restrict__ scales, |
|
const scalar_t* __restrict__ zeros, |
|
int batch, |
|
int heads, |
|
int vec_row, |
|
int height, |
|
int width |
|
); |
|
|
|
__global__ void VecQuant8BatchMatMulColumnCompressionKernel_faster( |
|
const half* __restrict__ vec, |
|
const uint8_t* __restrict__ mat, |
|
half* __restrict__ mul, |
|
const half* __restrict__ scales, |
|
const half* __restrict__ zeros, |
|
int batch, |
|
int heads, |
|
int vec_row, |
|
int height, |
|
int width |
|
); |
|
|
|
__global__ void VecQuant8BatchMatMulColumnCompressionKernel_faster_old( |
|
const half* __restrict__ vec, |
|
const uint8_t* __restrict__ mat, |
|
half* __restrict__ mul, |
|
const half* __restrict__ scales, |
|
const half* __restrict__ zeros, |
|
int batch, |
|
int heads, |
|
int vec_row, |
|
int height, |
|
int width |
|
); |
|
|
|
|
|
template <typename scalar_t> |
|
__global__ void VecQuant4BatchMatMulColumnCompressionKernel_old( |
|
const scalar_t* __restrict__ vec, |
|
const uint8_t* __restrict__ mat, |
|
scalar_t* __restrict__ mul, |
|
const scalar_t* __restrict__ scales, |
|
const scalar_t* __restrict__ zeros, |
|
int batch, |
|
int heads, |
|
int vec_row, |
|
int height, |
|
int width |
|
); |
|
|
|
|
|
__global__ void VecQuant8BatchMatMulKernel_faster( |
|
const half* __restrict__ vec, |
|
const uint8_t* __restrict__ mat, |
|
half* __restrict__ mul, |
|
const half* __restrict__ scales, |
|
const half* __restrict__ zeros, |
|
int batch, |
|
int heads, |
|
int vec_row, |
|
int vec_height, |
|
int height, |
|
int width |
|
); |
|
|
|
|
|
__global__ void VecQuant8BatchMatMulColumnCompressionKernel_faster( |
|
const half* __restrict__ vec, |
|
const uint8_t* __restrict__ mat, |
|
half* __restrict__ mul, |
|
const half* __restrict__ scales, |
|
const half* __restrict__ zeros, |
|
int batch, |
|
int heads, |
|
int vec_row, |
|
int height, |
|
int width |
|
); |
|
|
|
const int BLOCKWIDTH = 128; |
|
const int BLOCKHEIGHT8 = 32; |
|
const int BLOCKHEIGHT4 = 16; |
|
const int BLOCKHEIGHT_OLD4 = 128; |
|
|
|
|
|
__device__ inline unsigned int as_unsigned(int i) { |
|
return *reinterpret_cast<unsigned int*>(&i); |
|
} |
|
|
|
__device__ inline int as_int(int i) { |
|
return *reinterpret_cast<int*>(&i); |
|
} |
|
|
|
void vecquant8matmul_batched_column_compression_cuda( |
|
torch::Tensor vec, |
|
torch::Tensor mat, |
|
torch::Tensor mul, |
|
torch::Tensor scales, |
|
torch::Tensor zeros |
|
) { |
|
int batch = vec.size(0); |
|
int heads = vec.size(1); |
|
int vec_row = vec.size(2); |
|
int height = vec.size(3); |
|
int width = mat.size(3) * 4; |
|
|
|
dim3 blocks( |
|
(height + BLOCKWIDTH - 1) / BLOCKWIDTH, |
|
(width + BLOCKWIDTH - 1) / BLOCKWIDTH |
|
); |
|
dim3 threads(BLOCKWIDTH); |
|
|
|
AT_DISPATCH_FLOATING_TYPES( |
|
vec.type(), "vecquant8matmul_batched_cuda", ([&] { |
|
VecQuant8BatchMatMulColumnCompressionKernel<<<blocks, threads>>>( |
|
vec.data<scalar_t>(), mat.data<int>(), mul.data<scalar_t>(), |
|
scales.data<scalar_t>(), zeros.data<int>(), |
|
batch, heads, vec_row, height, width |
|
); |
|
}) |
|
); |
|
|
|
} |
|
|
|
template <typename scalar_t> |
|
__global__ void VecQuant8BatchMatMulColumnCompressionKernel( |
|
const scalar_t* __restrict__ vec, |
|
const int* __restrict__ mat, |
|
scalar_t* __restrict__ mul, |
|
const scalar_t* __restrict__ scales, |
|
const int* __restrict__ zeros, |
|
int batch, |
|
int heads, |
|
int vec_row, |
|
int height, |
|
int width |
|
) { |
|
int weight_total = batch * heads * height * width / 4; |
|
int input_total = batch * heads * vec_row * height; |
|
int out_total = batch * heads * vec_row * width; |
|
int tid = threadIdx.x; |
|
|
|
int h = BLOCKWIDTH * blockIdx.x; |
|
|
|
int w = BLOCKWIDTH * blockIdx.y + tid; |
|
if (w >= width && tid >= height) { |
|
return; |
|
} |
|
|
|
__shared__ scalar_t blockvec[BLOCKWIDTH]; |
|
int k; |
|
scalar_t w_tmp; |
|
|
|
float weight[BLOCKWIDTH]; |
|
|
|
for (int b = 0; b < batch; ++b){ |
|
for (int head = 0; head < heads; ++head){ |
|
int batch_shift = b * heads + head; |
|
for (k = 0; k < BLOCKWIDTH && h + k < height; ++k){ |
|
int i_w = (w / 4); |
|
int w_bit = (w % 4) * 8; |
|
|
|
int w_index = (batch_shift * height + h + k) * width / 4 + i_w; |
|
if (w_index >= weight_total || w >= width) { |
|
weight[k] = 0; |
|
} else { |
|
scalar_t scale = scales[batch_shift * height + h + k]; |
|
scalar_t zero = zeros[batch_shift * height + h + k]; |
|
w_tmp = ((as_unsigned(mat[w_index]) >> w_bit) & 0xFF); |
|
weight[k] = scale * (w_tmp - zero); |
|
} |
|
} |
|
|
|
scalar_t res; |
|
for (int vr = 0; vr < vec_row; ++vr){ |
|
res = 0; |
|
int vec_index = (batch_shift * vec_row + vr) * height + blockIdx.x * BLOCKWIDTH + tid; |
|
if (vec_index < input_total) { |
|
blockvec[tid] = vec[vec_index]; |
|
} else { |
|
blockvec[tid] = 0; |
|
} |
|
|
|
__syncthreads(); |
|
for (k = 0; k < BLOCKWIDTH && h + k < height; ++k){ |
|
|
|
res += weight[k] * blockvec[k]; |
|
} |
|
|
|
int out_index = (batch_shift * vec_row + vr) * width + w; |
|
if (out_index < out_total) { |
|
atomicAdd(&mul[out_index], res); |
|
} |
|
__syncthreads(); |
|
} |
|
} |
|
} |
|
} |
|
|
|
void vecquant8matmul_batched_cuda( |
|
torch::Tensor vec, |
|
torch::Tensor mat, |
|
torch::Tensor mul, |
|
torch::Tensor scales, |
|
torch::Tensor zeros |
|
) { |
|
int batch = vec.size(0); |
|
int heads = vec.size(1); |
|
int vec_row = vec.size(2); |
|
int vec_height = vec.size(3); |
|
int height = mat.size(2); |
|
int width = mat.size(3); |
|
int zero_width = zeros.size(2); |
|
|
|
dim3 blocks( |
|
(height + BLOCKHEIGHT8 - 1) / BLOCKHEIGHT8, |
|
(width + BLOCKWIDTH - 1) / BLOCKWIDTH |
|
); |
|
dim3 threads(BLOCKWIDTH); |
|
|
|
AT_DISPATCH_FLOATING_TYPES( |
|
vec.type(), "vecquant8matmul_batched_cuda", ([&] { |
|
VecQuant8BatchMatMulKernel<<<blocks, threads>>>( |
|
vec.data<scalar_t>(), mat.data<int>(), mul.data<scalar_t>(), |
|
scales.data<scalar_t>(), zeros.data<int>(), |
|
batch, heads, vec_row, vec_height, height, width, zero_width |
|
); |
|
}) |
|
); |
|
|
|
} |
|
|
|
template <typename scalar_t> |
|
__global__ void VecQuant8BatchMatMulKernel( |
|
const scalar_t* __restrict__ vec, |
|
const int* __restrict__ mat, |
|
scalar_t* __restrict__ mul, |
|
const scalar_t* __restrict__ scales, |
|
const int* __restrict__ zeros, |
|
int batch, |
|
int heads, |
|
int vec_row, |
|
int vec_height, |
|
int height, |
|
int width, |
|
int zero_width |
|
) { |
|
int weight_total = batch * heads * height * width; |
|
int input_total = batch * heads * vec_row * vec_height; |
|
int out_total = batch * heads * vec_row * width; |
|
int tid = threadIdx.x; |
|
|
|
int h = BLOCKHEIGHT8 * blockIdx.x; |
|
|
|
int w = BLOCKWIDTH * blockIdx.y + tid; |
|
if (w >= width && tid >= vec_height) { |
|
return; |
|
} |
|
|
|
__shared__ scalar_t blockvec[BLOCKWIDTH]; |
|
|
|
int i = width * h + w; |
|
|
|
|
|
|
|
int k; |
|
scalar_t w_tmp; |
|
|
|
int z_w = w / 4; |
|
int z_mod = (w % 4) * 8; |
|
|
|
float weight[BLOCKWIDTH]; |
|
|
|
for (int b = 0; b < batch; ++b){ |
|
for (int head = 0; head < heads; ++head){ |
|
int batch_shift = b * heads + head; |
|
for (k = 0; k < BLOCKWIDTH && h * 4 + k < vec_height; ++k){ |
|
int k_w = (k / 4); |
|
int k_bit = (k % 4) * 8; |
|
|
|
int w_index = batch_shift * height * width + i + (k_w * width); |
|
if (w_index >= weight_total || w >= width) { |
|
weight[k] = 0; |
|
} else { |
|
scalar_t scale = scales[batch_shift * width + w]; |
|
scalar_t zero; |
|
if (zero_width == width) { |
|
zero = zeros[batch_shift * width + w]; |
|
} else { |
|
zero = scalar_t(((as_unsigned(zeros[batch_shift * zero_width + z_w]) >> z_mod) & 0xFF) + 1); |
|
} |
|
w_tmp = ((as_unsigned(mat[w_index]) >> k_bit) & 0xFF); |
|
weight[k] = scale * (w_tmp - zero); |
|
} |
|
} |
|
|
|
scalar_t res; |
|
for (int vr = 0; vr < vec_row; ++vr){ |
|
res = 0; |
|
int vec_index = (batch_shift * vec_row + vr) * vec_height + blockIdx.x * BLOCKWIDTH + tid; |
|
if (vec_index < input_total) { |
|
blockvec[tid] = vec[vec_index]; |
|
} else { |
|
blockvec[tid] = 0; |
|
} |
|
|
|
__syncthreads(); |
|
for (k = 0; k < BLOCKWIDTH && h * 4 + k < vec_height; ++k){ |
|
|
|
res += weight[k] * blockvec[k]; |
|
} |
|
|
|
int out_index = (batch_shift * vec_row + vr) * width + w; |
|
if (out_index < out_total) { |
|
atomicAdd(&mul[out_index], res); |
|
} |
|
__syncthreads(); |
|
} |
|
} |
|
} |
|
} |
|
|
|
|
|
void vecquant8matmul_cuda( |
|
torch::Tensor vec, |
|
torch::Tensor mat, |
|
torch::Tensor mul, |
|
torch::Tensor scales, |
|
torch::Tensor zeros, |
|
torch::Tensor g_idx |
|
) { |
|
int batch = vec.size(0); |
|
int vec_height = vec.size(1); |
|
int height = mat.size(0); |
|
int width = mat.size(1); |
|
int zero_width = zeros.size(1); |
|
|
|
dim3 blocks( |
|
(height + BLOCKHEIGHT8 - 1) / BLOCKHEIGHT8, |
|
(width + BLOCKWIDTH - 1) / BLOCKWIDTH |
|
); |
|
dim3 threads(BLOCKWIDTH); |
|
|
|
AT_DISPATCH_FLOATING_TYPES( |
|
vec.type(), "vecquant8matmul_cuda", ([&] { |
|
VecQuant8MatMulKernel<<<blocks, threads>>>( |
|
vec.data<scalar_t>(), mat.data<int>(), mul.data<scalar_t>(), |
|
scales.data<scalar_t>(), zeros.data<int>(), g_idx.data<int>(), |
|
batch, vec_height, height, width, zero_width |
|
); |
|
}) |
|
); |
|
} |
|
|
|
template <typename scalar_t> |
|
__global__ void VecQuant8MatMulKernel( |
|
const scalar_t* __restrict__ vec, |
|
const int* __restrict__ mat, |
|
scalar_t* __restrict__ mul, |
|
const scalar_t* __restrict__ scales, |
|
const int* __restrict__ zeros, |
|
const int* __restrict__ g_idx, |
|
int batch, |
|
int vec_height, |
|
int height, |
|
int width, |
|
int zero_width |
|
) { |
|
int h = BLOCKHEIGHT8 * blockIdx.x; |
|
int w = BLOCKWIDTH * blockIdx.y + threadIdx.x; |
|
|
|
__shared__ scalar_t blockvec[BLOCKWIDTH]; |
|
int i = width * h + w; |
|
int g_h = h * 4; |
|
int k; |
|
unsigned int g; |
|
scalar_t w_tmp; |
|
|
|
int z_w = w / 4; |
|
int z_mod = (w % 4) * 8; |
|
|
|
float weight[BLOCKWIDTH]; |
|
|
|
for (k = 0; k < BLOCKWIDTH; ++k){ |
|
int k_w = (k / 4); |
|
int k_bit = (k % 4) * 8; |
|
|
|
g = as_int(g_idx[g_h + k]); |
|
scalar_t scale = scales[g * width + w]; |
|
scalar_t zero = scalar_t(((as_unsigned(zeros[g * zero_width + z_w]) >> z_mod) & 0xFF) + 1); |
|
|
|
w_tmp = ((as_unsigned(mat[i + (k_w * width)]) >> k_bit) & 0xFF); |
|
|
|
weight[k] = scale * (w_tmp - zero); |
|
} |
|
|
|
|
|
scalar_t res; |
|
for (int b = 0; b < batch; ++b){ |
|
res = 0; |
|
blockvec[threadIdx.x] = vec[b * vec_height + blockIdx.x * BLOCKWIDTH + threadIdx.x]; |
|
__syncthreads(); |
|
for (k = 0; k < BLOCKWIDTH; ++k){ |
|
res += weight[k] * blockvec[k]; |
|
} |
|
atomicAdd(&mul[b * width + w], res); |
|
__syncthreads(); |
|
} |
|
} |
|
|
|
|
|
|
|
void vecquant4matmul_batched_cuda( |
|
torch::Tensor vec, |
|
torch::Tensor mat, |
|
torch::Tensor mul, |
|
torch::Tensor scales, |
|
torch::Tensor zeros |
|
) { |
|
int batch = vec.size(0); |
|
int heads = vec.size(1); |
|
int vec_row = vec.size(2); |
|
int vec_height = vec.size(3); |
|
int height = mat.size(2); |
|
int width = mat.size(3); |
|
int zero_width = zeros.size(2); |
|
|
|
dim3 blocks( |
|
(height + BLOCKHEIGHT4 - 1) / BLOCKHEIGHT4, |
|
(width + BLOCKWIDTH - 1) / BLOCKWIDTH |
|
); |
|
dim3 threads(BLOCKWIDTH); |
|
|
|
AT_DISPATCH_FLOATING_TYPES( |
|
vec.type(), "vecquant4matmul_batched_cuda", ([&] { |
|
VecQuant4BatchMatMulKernel<<<blocks, threads>>>( |
|
vec.data<scalar_t>(), mat.data<int>(), mul.data<scalar_t>(), |
|
scales.data<scalar_t>(), zeros.data<int>(), |
|
batch, heads, vec_row, vec_height, height, width, zero_width |
|
); |
|
}) |
|
); |
|
|
|
} |
|
|
|
template <typename scalar_t> |
|
__global__ void VecQuant4BatchMatMulKernel( |
|
const scalar_t* __restrict__ vec, |
|
const int* __restrict__ mat, |
|
scalar_t* __restrict__ mul, |
|
const scalar_t* __restrict__ scales, |
|
const int* __restrict__ zeros, |
|
int batch, |
|
int heads, |
|
int vec_row, |
|
int vec_height, |
|
int height, |
|
int width, |
|
int zero_width |
|
) { |
|
int weight_total = batch * heads * height * width; |
|
int input_total = batch * heads * vec_row * vec_height; |
|
int out_total = batch * heads * vec_row * width; |
|
int tid = threadIdx.x; |
|
|
|
int h = BLOCKHEIGHT4 * blockIdx.x; |
|
|
|
int w = BLOCKWIDTH * blockIdx.y + tid; |
|
if (w >= width && tid >= vec_height) { |
|
return; |
|
} |
|
|
|
__shared__ scalar_t blockvec[BLOCKWIDTH]; |
|
|
|
int i = width * h + w; |
|
int k; |
|
scalar_t w_tmp; |
|
|
|
int z_w = w / 8; |
|
int z_mod = (w % 8) * 4; |
|
|
|
float weight[BLOCKWIDTH]; |
|
|
|
for (int b = 0; b < batch; ++b){ |
|
for (int head = 0; head < heads; ++head){ |
|
int batch_shift = b * heads + head; |
|
for (k = 0; k < BLOCKWIDTH && h * 8 + k < vec_height; ++k){ |
|
int k_w = (k / 8); |
|
int k_bit = (k % 8) * 4; |
|
|
|
int w_index = batch_shift * height * width + i + (k_w * width); |
|
if (w_index >= weight_total || w >= width) { |
|
weight[k] = 0; |
|
} else { |
|
scalar_t scale = scales[batch_shift * width + w]; |
|
scalar_t zero; |
|
if (zero_width == width) { |
|
zero = zeros[batch_shift * width + w]; |
|
} else { |
|
zero = scalar_t(((as_unsigned(zeros[batch_shift * zero_width + z_w]) >> z_mod) & 0xF)); |
|
} |
|
w_tmp = ((as_unsigned(mat[w_index]) >> k_bit) & 0xF); |
|
weight[k] = scale * (w_tmp - zero); |
|
} |
|
} |
|
|
|
scalar_t res; |
|
for (int vr = 0; vr < vec_row; ++vr){ |
|
res = 0; |
|
int vec_index = (batch_shift * vec_row + vr) * vec_height + blockIdx.x * BLOCKWIDTH + tid; |
|
if (vec_index < input_total) { |
|
blockvec[tid] = vec[vec_index]; |
|
} else { |
|
blockvec[tid] = 0; |
|
} |
|
|
|
__syncthreads(); |
|
for (k = 0; k < BLOCKWIDTH && h * 8 + k < vec_height; ++k){ |
|
|
|
res += weight[k] * blockvec[k]; |
|
} |
|
|
|
int out_index = (batch_shift * vec_row + vr) * width + w; |
|
if (out_index < out_total) { |
|
atomicAdd(&mul[out_index], res); |
|
} |
|
__syncthreads(); |
|
} |
|
} |
|
} |
|
} |
|
|
|
|
|
|
|
void vecquant4matmul_batched_column_compression_cuda( |
|
torch::Tensor vec, |
|
torch::Tensor mat, |
|
torch::Tensor mul, |
|
torch::Tensor scales, |
|
torch::Tensor zeros |
|
) { |
|
int batch = vec.size(0); |
|
int heads = vec.size(1); |
|
int vec_row = vec.size(2); |
|
int height = vec.size(3); |
|
int width = mat.size(3) * 8; |
|
|
|
dim3 blocks( |
|
(height + BLOCKWIDTH - 1) / BLOCKWIDTH, |
|
(width + BLOCKWIDTH - 1) / BLOCKWIDTH |
|
); |
|
dim3 threads(BLOCKWIDTH); |
|
|
|
AT_DISPATCH_FLOATING_TYPES( |
|
vec.type(), "vecquant4matmul_batched_cuda", ([&] { |
|
VecQuant4BatchMatMulColumnCompressionKernel<<<blocks, threads>>>( |
|
vec.data<scalar_t>(), mat.data<int>(), mul.data<scalar_t>(), |
|
scales.data<scalar_t>(), zeros.data<int>(), |
|
batch, heads, vec_row, height, width |
|
); |
|
}) |
|
); |
|
|
|
} |
|
|
|
template <typename scalar_t> |
|
__global__ void VecQuant4BatchMatMulColumnCompressionKernel( |
|
const scalar_t* __restrict__ vec, |
|
const int* __restrict__ mat, |
|
scalar_t* __restrict__ mul, |
|
const scalar_t* __restrict__ scales, |
|
const int* __restrict__ zeros, |
|
int batch, |
|
int heads, |
|
int vec_row, |
|
int height, |
|
int width |
|
) { |
|
int weight_total = batch * heads * height * width / 8; |
|
int input_total = batch * heads * vec_row * height; |
|
int out_total = batch * heads * vec_row * width; |
|
int tid = threadIdx.x; |
|
|
|
int h = BLOCKWIDTH * blockIdx.x; |
|
|
|
int w = BLOCKWIDTH * blockIdx.y + tid; |
|
if (w >= width && tid >= height) { |
|
return; |
|
} |
|
|
|
__shared__ scalar_t blockvec[BLOCKWIDTH]; |
|
int k; |
|
scalar_t w_tmp; |
|
|
|
float weight[BLOCKWIDTH]; |
|
|
|
for (int b = 0; b < batch; ++b){ |
|
for (int head = 0; head < heads; ++head){ |
|
int batch_shift = b * heads + head; |
|
for (k = 0; k < BLOCKWIDTH && h + k < height; ++k){ |
|
int i_w = (w / 8); |
|
int w_bit = (w % 8) * 4; |
|
|
|
int w_index = (batch_shift * height + h + k) * width / 8 + i_w; |
|
if (w_index >= weight_total || w >= width) { |
|
weight[k] = 0; |
|
} else { |
|
scalar_t scale = scales[batch_shift * height + h + k]; |
|
scalar_t zero = zeros[batch_shift * height + h + k]; |
|
w_tmp = ((as_unsigned(mat[w_index]) >> w_bit) & 0xF); |
|
weight[k] = scale * (w_tmp - zero); |
|
} |
|
} |
|
|
|
scalar_t res; |
|
for (int vr = 0; vr < vec_row; ++vr){ |
|
res = 0; |
|
int vec_index = (batch_shift * vec_row + vr) * height + blockIdx.x * BLOCKWIDTH + tid; |
|
if (vec_index < input_total) { |
|
blockvec[tid] = vec[vec_index]; |
|
} else { |
|
blockvec[tid] = 0; |
|
} |
|
|
|
__syncthreads(); |
|
for (k = 0; k < BLOCKWIDTH && h + k < height; ++k){ |
|
|
|
res += weight[k] * blockvec[k]; |
|
} |
|
|
|
int out_index = (batch_shift * vec_row + vr) * width + w; |
|
if (out_index < out_total) { |
|
atomicAdd(&mul[out_index], res); |
|
} |
|
__syncthreads(); |
|
} |
|
} |
|
} |
|
} |
|
|
|
|
|
void vecquant8matmul_batched_old_cuda( |
|
torch::Tensor vec, |
|
torch::Tensor mat, |
|
torch::Tensor mul, |
|
torch::Tensor scales, |
|
torch::Tensor zeros |
|
) { |
|
int batch = vec.size(0); |
|
int heads = vec.size(1); |
|
int vec_row = vec.size(2); |
|
int vec_height = vec.size(3); |
|
int height = mat.size(2); |
|
int width = mat.size(3); |
|
int zero_width = zeros.size(2); |
|
|
|
dim3 blocks( |
|
(height + BLOCKWIDTH - 1) / BLOCKWIDTH, |
|
(width + BLOCKWIDTH - 1) / BLOCKWIDTH |
|
); |
|
dim3 threads(BLOCKWIDTH); |
|
|
|
AT_DISPATCH_FLOATING_TYPES( |
|
vec.type(), "vecquant8matmul_batched_old_cuda", ([&] { |
|
VecQuant8BatchMatMulKernel_old<<<blocks, threads>>>( |
|
vec.data<scalar_t>(), mat.data<uint8_t>(), mul.data<scalar_t>(), |
|
scales.data<scalar_t>(), zeros.data<scalar_t>(), |
|
batch, heads, vec_row, vec_height, height, width, zero_width |
|
); |
|
}) |
|
); |
|
} |
|
|
|
|
|
template <typename scalar_t> |
|
__global__ void VecQuant8BatchMatMulKernel_old( |
|
const scalar_t* __restrict__ vec, |
|
const uint8_t* __restrict__ mat, |
|
scalar_t* __restrict__ mul, |
|
const scalar_t* __restrict__ scales, |
|
const scalar_t* __restrict__ zeros, |
|
int batch, |
|
int heads, |
|
int vec_row, |
|
int vec_height, |
|
int height, |
|
int width, |
|
int zero_width |
|
) { |
|
int weight_total = batch * heads * height * width; |
|
int input_total = batch * heads * vec_row * vec_height; |
|
int out_total = batch * heads * vec_row * width; |
|
int tid = threadIdx.x; |
|
|
|
int h = BLOCKWIDTH * blockIdx.x; |
|
|
|
int w = BLOCKWIDTH * blockIdx.y + tid; |
|
if (w >= width && tid >= vec_height) { |
|
return; |
|
} |
|
|
|
__shared__ scalar_t blockvec[BLOCKWIDTH]; |
|
|
|
int i = width * h + w; |
|
int k; |
|
scalar_t w_tmp; |
|
|
|
float weight[BLOCKWIDTH]; |
|
for (int b = 0; b < batch; ++b){ |
|
for (int head = 0; head < heads; ++head){ |
|
int batch_shift = b * heads + head; |
|
for (k = 0; k < BLOCKWIDTH && h + k < vec_height; ++k){ |
|
int k_w = k; |
|
int w_index = batch_shift * height * width + i + (k_w * width); |
|
if (w_index >= weight_total || w >= width) { |
|
weight[k] = 0; |
|
} else { |
|
scalar_t scale = scales[batch_shift * width + w]; |
|
scalar_t zero = zeros[batch_shift * width + w]; |
|
w_tmp = as_unsigned(mat[w_index]); |
|
weight[k] = scale * (w_tmp - zero); |
|
} |
|
} |
|
|
|
scalar_t res; |
|
for (int vr = 0; vr < vec_row; ++vr){ |
|
res = 0; |
|
int vec_index = (batch_shift * vec_row + vr) * vec_height + blockIdx.x * BLOCKWIDTH + tid; |
|
if (vec_index < input_total) { |
|
blockvec[tid] = vec[vec_index]; |
|
} else { |
|
blockvec[tid] = 0; |
|
} |
|
|
|
__syncthreads(); |
|
for (k = 0; k < BLOCKWIDTH && h + k < vec_height; ++k){ |
|
|
|
res += weight[k] * blockvec[k]; |
|
} |
|
|
|
int out_index = (batch_shift * vec_row + vr) * width + w; |
|
if (out_index < out_total) { |
|
atomicAdd(&mul[out_index], res); |
|
} |
|
__syncthreads(); |
|
} |
|
} |
|
} |
|
} |
|
|
|
|
|
|
|
void vecquant8matmul_batched_faster_cuda( |
|
torch::Tensor vec, |
|
torch::Tensor mat, |
|
torch::Tensor mul, |
|
torch::Tensor scales, |
|
torch::Tensor zeros |
|
) { |
|
int batch = vec.size(0); |
|
int heads = vec.size(1); |
|
int vec_row = vec.size(2); |
|
int vec_height = vec.size(3); |
|
int height = mat.size(2); |
|
int width = mat.size(3); |
|
int zero_width = zeros.size(2); |
|
|
|
dim3 blocks( |
|
(height + BLOCKWIDTH - 1) / BLOCKWIDTH, |
|
(width + BLOCKWIDTH - 1) / BLOCKWIDTH |
|
); |
|
dim3 threads(BLOCKWIDTH); |
|
|
|
VecQuant8BatchMatMulKernel_faster<<<blocks, threads>>>( |
|
(half*) vec.data_ptr(), |
|
(uint8_t*) mat.data_ptr(), |
|
(half*) mul.data_ptr(), |
|
(half*) scales.data_ptr(), |
|
(half*) zeros.data_ptr(), |
|
batch, heads, vec_row, vec_height, height, width, zero_width |
|
); |
|
} |
|
|
|
|
|
|
|
__global__ void VecQuant8BatchMatMulKernel_faster( |
|
const half* __restrict__ vec, |
|
const uint8_t* __restrict__ mat, |
|
half* __restrict__ mul, |
|
const half* __restrict__ scales, |
|
const half* __restrict__ zeros, |
|
int batch, |
|
int heads, |
|
int vec_row, |
|
int vec_height, |
|
int height, |
|
int width, |
|
int zero_width |
|
) { |
|
|
|
int input_total = batch * heads * vec_row * vec_height; |
|
int out_total = batch * heads * vec_row * width; |
|
int tid = threadIdx.x; |
|
int h = BLOCKWIDTH * blockIdx.x; |
|
int w = BLOCKWIDTH * blockIdx.y + tid; |
|
if (w >= width && tid >= height) { |
|
return; |
|
} |
|
|
|
__shared__ float blockvec[BLOCKWIDTH]; |
|
int i = width * h + w; |
|
int k; |
|
float w_tmp; |
|
|
|
float weight[BLOCKWIDTH]; |
|
for (int b = 0; b < batch; ++b){ |
|
for (int head = 0; head < heads; ++head){ |
|
int batch_shift = b * heads + head; |
|
for (k = 0; k < BLOCKWIDTH && h + k < vec_height; ++k){ |
|
int k_w = k; |
|
int w_index = batch_shift * height * width + i + (k_w * width); |
|
float scale = __half2float(scales[batch_shift * width + w]); |
|
float zero = __half2float(zeros[batch_shift * width + w]); |
|
w_tmp = as_unsigned(mat[w_index]); |
|
weight[k] = scale *(w_tmp-zero); |
|
} |
|
|
|
float res; |
|
for (int vr = 0; vr < vec_row; ++vr){ |
|
res = 0; |
|
int vec_index = (batch_shift * vec_row + vr) * vec_height + blockIdx.x * BLOCKWIDTH + tid; |
|
if (vec_index < input_total) { |
|
blockvec[tid] = __half2float(vec[vec_index]); |
|
} else { |
|
blockvec[tid] = 0; |
|
} |
|
__syncthreads(); |
|
for (k = 0; k < BLOCKWIDTH && h + k < vec_height; ++k){ |
|
float temp_res = weight[k]*blockvec[k]; |
|
res += temp_res; |
|
} |
|
int out_index = (batch_shift * vec_row + vr) * width + w; |
|
if (out_index < out_total) { |
|
atomicAdd(&mul[out_index], __float2half(res)); |
|
} |
|
__syncthreads(); |
|
} |
|
} |
|
} |
|
} |
|
|
|
|
|
|
|
|
|
void vecquant8matmul_batched_column_compression_faster_cuda( |
|
torch::Tensor vec, |
|
torch::Tensor mat, |
|
torch::Tensor mul, |
|
torch::Tensor scales, |
|
torch::Tensor zeros |
|
) { |
|
int batch = vec.size(0); |
|
int heads = vec.size(1); |
|
int vec_row = vec.size(2); |
|
int height = vec.size(3); |
|
int width = mat.size(3); |
|
|
|
dim3 blocks( |
|
(height + BLOCKWIDTH - 1) / BLOCKWIDTH, |
|
(width + BLOCKWIDTH - 1) / BLOCKWIDTH |
|
); |
|
dim3 threads(BLOCKWIDTH); |
|
|
|
VecQuant8BatchMatMulColumnCompressionKernel_faster<<<blocks, threads>>>( |
|
(half*) vec.data_ptr(), |
|
(uint8_t*) mat.data_ptr(), |
|
(half*) mul.data_ptr(), |
|
(half*) scales.data_ptr(), |
|
(half*) zeros.data_ptr(), |
|
batch, heads, vec_row, height, width |
|
); |
|
|
|
} |
|
|
|
__global__ void VecQuant8BatchMatMulColumnCompressionKernel_faster( |
|
const half* __restrict__ vec, |
|
const uint8_t* __restrict__ mat, |
|
half* __restrict__ mul, |
|
const half* __restrict__ scales, |
|
const half* __restrict__ zeros, |
|
int batch, |
|
int heads, |
|
int vec_row, |
|
int height, |
|
int width |
|
) { |
|
|
|
int input_total = batch * heads * vec_row * height; |
|
int out_total = batch * heads * vec_row * width; |
|
int tid = threadIdx.x; |
|
int h = BLOCKWIDTH * blockIdx.x; |
|
int w = BLOCKWIDTH * blockIdx.y + tid; |
|
if (w >= width && tid >= height) { |
|
return; |
|
} |
|
|
|
__shared__ float blockvec[BLOCKWIDTH]; |
|
int k; |
|
float w_tmp; |
|
float weight[BLOCKWIDTH]; |
|
|
|
for (int b = 0; b < batch; ++b){ |
|
for (int head = 0; head < heads; ++head){ |
|
int batch_shift = b * heads + head; |
|
for (k = 0; k < BLOCKWIDTH; ++k){ |
|
int w_index = (batch_shift * height + h + k) * width + w; |
|
float scale = __half2float(scales[batch_shift * height + h + k]); |
|
float zero = __half2float(zeros[batch_shift * height + h + k]); |
|
w_tmp = mat[w_index]; |
|
weight[k] = scale * (w_tmp-zero); |
|
} |
|
|
|
float res; |
|
for (int vr = 0; vr < vec_row; ++vr){ |
|
res = 0; |
|
int vec_index = (batch_shift * vec_row + vr) * height + blockIdx.x * BLOCKWIDTH + tid; |
|
if (vec_index < input_total) { |
|
blockvec[tid] = __half2float(vec[vec_index]); |
|
} else { |
|
blockvec[tid] = 0; |
|
} |
|
__syncthreads(); |
|
for (k = 0; k < BLOCKWIDTH; ++k){ |
|
res += weight[k]*blockvec[k]; |
|
} |
|
int out_index = (batch_shift * vec_row + vr) * width + w; |
|
if (out_index < out_total) { |
|
atomicAdd(&mul[out_index], __float2half(res)); |
|
} |
|
__syncthreads(); |
|
} |
|
} |
|
} |
|
} |
|
|
|
|
|
|
|
void vecquant8matmul_batched_column_compression_old_cuda( |
|
torch::Tensor vec, |
|
torch::Tensor mat, |
|
torch::Tensor mul, |
|
torch::Tensor scales, |
|
torch::Tensor zeros |
|
) { |
|
int batch = vec.size(0); |
|
int heads = vec.size(1); |
|
int vec_row = vec.size(2); |
|
int height = vec.size(3); |
|
int width = mat.size(3); |
|
|
|
dim3 blocks( |
|
(height + BLOCKWIDTH - 1) / BLOCKWIDTH, |
|
(width + BLOCKWIDTH - 1) / BLOCKWIDTH |
|
); |
|
dim3 threads(BLOCKWIDTH); |
|
|
|
AT_DISPATCH_FLOATING_TYPES( |
|
vec.type(), "vecquant8matmul_batched_column_compression_old_cuda", ([&] { |
|
VecQuant8BatchMatMulColumnCompressionKernel_old<<<blocks, threads>>>( |
|
vec.data<scalar_t>(), mat.data<uint8_t>(), mul.data<scalar_t>(), |
|
scales.data<scalar_t>(), zeros.data<scalar_t>(), |
|
batch, heads, vec_row, height, width |
|
); |
|
}) |
|
); |
|
|
|
} |
|
|
|
template <typename scalar_t> |
|
__global__ void VecQuant8BatchMatMulColumnCompressionKernel_old( |
|
const scalar_t* __restrict__ vec, |
|
const uint8_t* __restrict__ mat, |
|
scalar_t* __restrict__ mul, |
|
const scalar_t* __restrict__ scales, |
|
const scalar_t* __restrict__ zeros, |
|
int batch, |
|
int heads, |
|
int vec_row, |
|
int height, |
|
int width |
|
) { |
|
int weight_total = batch * heads * height * width; |
|
int input_total = batch * heads * vec_row * height; |
|
int out_total = batch * heads * vec_row * width; |
|
int tid = threadIdx.x; |
|
|
|
int h = BLOCKWIDTH * blockIdx.x; |
|
|
|
int w = BLOCKWIDTH * blockIdx.y + tid; |
|
if (w >= width && tid >= height) { |
|
return; |
|
} |
|
|
|
__shared__ scalar_t blockvec[BLOCKWIDTH]; |
|
int k; |
|
scalar_t w_tmp; |
|
|
|
float weight[BLOCKWIDTH]; |
|
|
|
for (int b = 0; b < batch; ++b){ |
|
for (int head = 0; head < heads; ++head){ |
|
int batch_shift = b * heads + head; |
|
for (k = 0; k < BLOCKWIDTH && h + k < height; ++k){ |
|
int w_index = (batch_shift * height + h + k) * width + w; |
|
if (w_index >= weight_total || w >= width) { |
|
weight[k] = 0; |
|
} else { |
|
scalar_t scale = scales[batch_shift * height + h + k]; |
|
scalar_t zero = zeros[batch_shift * height + h + k]; |
|
w_tmp = mat[w_index]; |
|
weight[k] = scale * (w_tmp - zero); |
|
} |
|
} |
|
|
|
scalar_t res; |
|
for (int vr = 0; vr < vec_row; ++vr){ |
|
res = 0; |
|
int vec_index = (batch_shift * vec_row + vr) * height + blockIdx.x * BLOCKWIDTH + tid; |
|
if (vec_index < input_total) { |
|
blockvec[tid] = vec[vec_index]; |
|
} else { |
|
blockvec[tid] = 0; |
|
} |
|
|
|
__syncthreads(); |
|
for (k = 0; k < BLOCKWIDTH && h + k < height; ++k){ |
|
|
|
res += weight[k] * blockvec[k]; |
|
} |
|
|
|
int out_index = (batch_shift * vec_row + vr) * width + w; |
|
if (out_index < out_total) { |
|
atomicAdd(&mul[out_index], res); |
|
} |
|
__syncthreads(); |
|
} |
|
} |
|
} |
|
} |
|
|
|
|
|
void vecquant4matmul_batched_old_cuda( |
|
torch::Tensor vec, |
|
torch::Tensor mat, |
|
torch::Tensor mul, |
|
torch::Tensor scales, |
|
torch::Tensor zeros |
|
) { |
|
int batch = vec.size(0); |
|
int heads = vec.size(1); |
|
int vec_row = vec.size(2); |
|
int vec_height = vec.size(3); |
|
int height = mat.size(2); |
|
int width = mat.size(3); |
|
int zero_width = zeros.size(2); |
|
|
|
dim3 blocks( |
|
(height + BLOCKHEIGHT_OLD4 - 1) / BLOCKHEIGHT_OLD4, |
|
(width + BLOCKWIDTH - 1) / BLOCKWIDTH |
|
); |
|
dim3 threads(BLOCKWIDTH); |
|
|
|
AT_DISPATCH_FLOATING_TYPES( |
|
vec.type(), "vecquant4matmul_batched_old_cuda", ([&] { |
|
VecQuant4BatchMatMulKernel_old<<<blocks, threads>>>( |
|
vec.data<scalar_t>(), mat.data<uint8_t>(), mul.data<scalar_t>(), |
|
scales.data<scalar_t>(), zeros.data<scalar_t>(), |
|
batch, heads, vec_row, vec_height, height, width, zero_width |
|
); |
|
}) |
|
); |
|
|
|
} |
|
|
|
template <typename scalar_t> |
|
__global__ void VecQuant4BatchMatMulKernel_old( |
|
const scalar_t* __restrict__ vec, |
|
const uint8_t* __restrict__ mat, |
|
scalar_t* __restrict__ mul, |
|
const scalar_t* __restrict__ scales, |
|
const scalar_t* __restrict__ zeros, |
|
int batch, |
|
int heads, |
|
int vec_row, |
|
int vec_height, |
|
int height, |
|
int width, |
|
int zero_width |
|
) { |
|
int weight_total = batch * heads * height * width; |
|
int input_total = batch * heads * vec_row * vec_height; |
|
int out_total = batch * heads * vec_row * width; |
|
int tid = threadIdx.x; |
|
|
|
int h = BLOCKHEIGHT_OLD4 * blockIdx.x; |
|
|
|
int w = BLOCKWIDTH * blockIdx.y + tid; |
|
if (w >= width && tid >= vec_height) { |
|
return; |
|
} |
|
|
|
__shared__ scalar_t blockvec[BLOCKWIDTH]; |
|
|
|
int i = width * h + w; |
|
int k; |
|
scalar_t w_tmp; |
|
|
|
float weight[BLOCKWIDTH]; |
|
for (int b = 0; b < batch; ++b){ |
|
for (int head = 0; head < heads; ++head){ |
|
int batch_shift = b * heads + head; |
|
for (k = 0; k < BLOCKWIDTH && h*2 + k < vec_height; ++k){ |
|
int k_w = (k / 2); |
|
int k_bit = (k % 2) * 4; |
|
int w_index = batch_shift * height * width + i + (k_w * width); |
|
if (w_index >= weight_total || w >= width) { |
|
weight[k] = 0; |
|
} else { |
|
scalar_t scale = scales[batch_shift * width + w]; |
|
scalar_t zero = zeros[batch_shift * width + w]; |
|
w_tmp = ((as_unsigned(mat[w_index]) >> k_bit) & 0xF); |
|
weight[k] = scale * (w_tmp - zero); |
|
} |
|
} |
|
|
|
scalar_t res; |
|
for (int vr = 0; vr < vec_row; ++vr){ |
|
res = 0; |
|
int vec_index = (batch_shift * vec_row + vr) * vec_height + blockIdx.x * BLOCKWIDTH + tid; |
|
if (vec_index < input_total) { |
|
blockvec[tid] = vec[vec_index]; |
|
} else { |
|
blockvec[tid] = 0; |
|
} |
|
|
|
__syncthreads(); |
|
for (k = 0; k < BLOCKWIDTH && h*2 + k < vec_height; ++k){ |
|
|
|
res += weight[k] * blockvec[k]; |
|
} |
|
|
|
int out_index = (batch_shift * vec_row + vr) * width + w; |
|
if (out_index < out_total) { |
|
atomicAdd(&mul[out_index], res); |
|
} |
|
__syncthreads(); |
|
} |
|
} |
|
} |
|
} |
|
|
|
|
|
|
|
|
|
|
|
void vecquant4matmul_batched_column_compression_old_cuda( |
|
torch::Tensor vec, |
|
torch::Tensor mat, |
|
torch::Tensor mul, |
|
torch::Tensor scales, |
|
torch::Tensor zeros |
|
) { |
|
int batch = vec.size(0); |
|
int heads = vec.size(1); |
|
int vec_row = vec.size(2); |
|
int height = vec.size(3); |
|
int width = mat.size(3); |
|
|
|
dim3 blocks( |
|
(height + BLOCKHEIGHT_OLD4 - 1) / BLOCKHEIGHT_OLD4, |
|
(width + BLOCKWIDTH - 1) / BLOCKWIDTH |
|
); |
|
dim3 threads(BLOCKWIDTH); |
|
|
|
AT_DISPATCH_FLOATING_TYPES( |
|
vec.type(), "vecquant4matmul_batched_column_compression_old_cuda", ([&] { |
|
VecQuant4BatchMatMulColumnCompressionKernel_old<<<blocks, threads>>>( |
|
vec.data<scalar_t>(), mat.data<uint8_t>(), mul.data<scalar_t>(), |
|
scales.data<scalar_t>(), zeros.data<scalar_t>(), |
|
batch, heads, vec_row, height, width |
|
); |
|
}) |
|
); |
|
|
|
} |
|
|
|
template <typename scalar_t> |
|
__global__ void VecQuant4BatchMatMulColumnCompressionKernel_old( |
|
const scalar_t* __restrict__ vec, |
|
const uint8_t* __restrict__ mat, |
|
scalar_t* __restrict__ mul, |
|
const scalar_t* __restrict__ scales, |
|
const scalar_t* __restrict__ zeros, |
|
int batch, |
|
int heads, |
|
int vec_row, |
|
int height, |
|
int width |
|
) { |
|
int weight_total = batch * heads * height * width; |
|
int input_total = batch * heads * vec_row * height; |
|
int out_total = batch * heads * vec_row * width; |
|
int tid = threadIdx.x; |
|
|
|
int h = BLOCKHEIGHT_OLD4 * blockIdx.x; |
|
|
|
int w = BLOCKWIDTH * blockIdx.y + tid; |
|
if (w >= width && tid >= height) { |
|
return; |
|
} |
|
|
|
__shared__ scalar_t blockvec[BLOCKWIDTH]; |
|
int k; |
|
scalar_t w_tmp; |
|
|
|
float weight[BLOCKWIDTH]; |
|
|
|
for (int b = 0; b < batch; ++b){ |
|
for (int head = 0; head < heads; ++head){ |
|
int batch_shift = b * heads + head; |
|
for (k = 0; k < BLOCKWIDTH && h*2 + k < height; ++k){ |
|
int k_w = (k / 2); |
|
int k_bit = (k % 2) * 4; |
|
int w_index = (batch_shift * height + h + k) * width + k_w; |
|
if (w_index >= weight_total || w >= width) { |
|
weight[k] = 0; |
|
} else { |
|
scalar_t scale = scales[batch_shift * height + h + k]; |
|
scalar_t zero = zeros[batch_shift * height + h + k]; |
|
w_tmp = ((as_unsigned(mat[w_index]) >> k_bit) & 0xF); |
|
weight[k] = scale * (w_tmp - zero); |
|
} |
|
} |
|
|
|
scalar_t res; |
|
for (int vr = 0; vr < vec_row; ++vr){ |
|
res = 0; |
|
int vec_index = (batch_shift * vec_row + vr) * height + blockIdx.x * BLOCKWIDTH + tid; |
|
if (vec_index < input_total) { |
|
blockvec[tid] = vec[vec_index]; |
|
} else { |
|
blockvec[tid] = 0; |
|
} |
|
|
|
__syncthreads(); |
|
for (k = 0; k < BLOCKWIDTH && h*2 + k < height; ++k){ |
|
|
|
res += weight[k] * blockvec[k]; |
|
} |
|
|
|
int out_index = (batch_shift * vec_row + vr) * width + w; |
|
if (out_index < out_total) { |
|
atomicAdd(&mul[out_index], res); |
|
} |
|
__syncthreads(); |
|
} |
|
} |
|
} |
|
} |
|
|
|
|
|
|
|
|
|
|
|
void vecquant8matmul_batched_faster_old_cuda( |
|
torch::Tensor vec, |
|
torch::Tensor mat, |
|
torch::Tensor mul, |
|
torch::Tensor scales, |
|
torch::Tensor zeros |
|
) { |
|
int batch = vec.size(0); |
|
int heads = vec.size(1); |
|
int vec_row = vec.size(2); |
|
int vec_height = vec.size(3); |
|
int height = mat.size(2); |
|
int width = mat.size(3); |
|
|
|
dim3 blocks( |
|
(height + BLOCKWIDTH - 1) / BLOCKWIDTH, |
|
(width + BLOCKWIDTH - 1) / BLOCKWIDTH |
|
); |
|
dim3 threads(BLOCKWIDTH); |
|
|
|
VecQuant8BatchMatMulKernel_faster_old<<<blocks, threads>>>( |
|
(half*) vec.data_ptr(), |
|
(uint8_t*) mat.data_ptr(), |
|
(half*) mul.data_ptr(), |
|
(half*) scales.data_ptr(), |
|
(half*) zeros.data_ptr(), |
|
batch, heads, vec_row, vec_height, height, width |
|
); |
|
} |
|
|
|
|
|
__global__ void VecQuant8BatchMatMulKernel_faster_old( |
|
const half* __restrict__ vec, |
|
const uint8_t* __restrict__ mat, |
|
half* __restrict__ mul, |
|
const half* __restrict__ scales, |
|
const half* __restrict__ zeros, |
|
int batch, |
|
int heads, |
|
int vec_row, |
|
int vec_height, |
|
int height, |
|
int width |
|
) { |
|
int weight_total = batch * heads * height * width; |
|
int input_total = batch * heads * vec_row * vec_height; |
|
int out_total = batch * heads * vec_row * width; |
|
int tid = threadIdx.x; |
|
const int BLOCKWIDTH_half = BLOCKWIDTH/2; |
|
|
|
int h = BLOCKWIDTH * blockIdx.x; |
|
int w = BLOCKWIDTH * blockIdx.y + tid; |
|
|
|
|
|
|
|
|
|
|
|
__shared__ half blockvec[BLOCKWIDTH]; |
|
int i = width * h + w; |
|
int k; |
|
|
|
half w_tmp1 = __float2half(0); |
|
half w_tmp2 = __float2half(0); |
|
|
|
half2 weight[BLOCKWIDTH_half]; |
|
for (int b = 0; b < batch; ++b){ |
|
for (int head = 0; head < heads; ++head){ |
|
int batch_shift = b * heads + head; |
|
|
|
for (k = 0; k < BLOCKWIDTH_half; ++k){ |
|
int w_index1 = batch_shift * height * width + i + (2 * k * width); |
|
int w_index2 = batch_shift * height * width + i + ((2 * k + 1) * width); |
|
int zero_index = batch_shift * width + w; |
|
if (w_index1 >= weight_total || w >= width || (2 * k + h) >= height) { |
|
weight[k] = __float2half2_rn(0); |
|
} else { |
|
float zero_f=__half2float(zeros[zero_index]); |
|
float scale_f= __half2float(scales[zero_index]); |
|
if (w_index2 >= weight_total){ |
|
w_tmp1 = __float2half((as_unsigned(mat[w_index1]) -zero_f)*scale_f); |
|
w_tmp2 = __float2half(0); |
|
weight[k] = __halves2half2(w_tmp1,w_tmp2); |
|
|
|
}else{ |
|
w_tmp1 = __int2half_rn(as_unsigned(mat[w_index1])); |
|
w_tmp2 = __int2half_rn(as_unsigned(mat[w_index2])); |
|
|
|
|
|
weight[k] = __hfma2(__halves2half2(w_tmp1,w_tmp2), __float2half2_rn(scale_f), __float2half2_rn(-(scale_f * zero_f))); |
|
|
|
} |
|
} |
|
} |
|
|
|
|
|
for (int vr = 0; vr < vec_row; ++vr){ |
|
float res=0; |
|
int vec_index = (batch_shift * vec_row + vr) * height + blockIdx.x * BLOCKWIDTH + tid; |
|
int out_index = (batch_shift * vec_row + vr) * width + w; |
|
if (vec_index < input_total) { |
|
|
|
blockvec[tid] = vec[vec_index]; |
|
|
|
} else { |
|
blockvec[tid] = __float2half(0); |
|
} |
|
__syncthreads(); |
|
if (out_index < out_total) { |
|
for (k = 0; k < BLOCKWIDTH_half; ++k){ |
|
half2 res2 = __hmul2(weight[k],__halves2half2(blockvec[2*k],blockvec[2*k+1])); |
|
res += __low2float(res2) + __high2float(res2); |
|
} |
|
atomicAdd(&mul[out_index], __float2half(res)); |
|
} |
|
__syncthreads(); |
|
} |
|
} |
|
} |
|
} |
|
|
|
|
|
void vecquant8matmul_batched_column_compression_faster_old_cuda( |
|
torch::Tensor vec, |
|
torch::Tensor mat, |
|
torch::Tensor mul, |
|
torch::Tensor scales, |
|
torch::Tensor zeros |
|
) { |
|
int batch = vec.size(0); |
|
int heads = vec.size(1); |
|
int vec_row = vec.size(2); |
|
int height = mat.size(2); |
|
int width = mat.size(3); |
|
|
|
dim3 blocks( |
|
(height + BLOCKWIDTH - 1) / BLOCKWIDTH, |
|
(width + BLOCKWIDTH - 1) / BLOCKWIDTH |
|
); |
|
dim3 threads(BLOCKWIDTH); |
|
|
|
VecQuant8BatchMatMulColumnCompressionKernel_faster_old<<<blocks, threads>>>( |
|
(half*) vec.data_ptr(), |
|
(uint8_t*) mat.data_ptr(), |
|
(half*) mul.data_ptr(), |
|
(half*) scales.data_ptr(), |
|
(half*) zeros.data_ptr(), |
|
batch, heads, vec_row, height, width |
|
); |
|
|
|
} |
|
|
|
|
|
__global__ void VecQuant8BatchMatMulColumnCompressionKernel_faster_old( |
|
const half* __restrict__ vec, |
|
const uint8_t* __restrict__ mat, |
|
half* __restrict__ mul, |
|
const half* __restrict__ scales, |
|
const half* __restrict__ zeros, |
|
int batch, |
|
int heads, |
|
int vec_row, |
|
int height, |
|
int width |
|
) { |
|
int weight_total = batch * heads * height * width; |
|
int input_total = batch * heads * vec_row * height; |
|
int out_total = batch * heads * vec_row * width; |
|
int tid = threadIdx.x; |
|
int h = BLOCKWIDTH * blockIdx.x; |
|
int w = BLOCKWIDTH * blockIdx.y + tid; |
|
if (w >= width && tid >= height) { |
|
return; |
|
} |
|
__shared__ half blockvec[BLOCKWIDTH]; |
|
int k; |
|
half w_tmp1 = __float2half(0); |
|
half w_tmp2 = __float2half(0); |
|
int i = width * h + w; |
|
const int BLOCKWIDTH_half = BLOCKWIDTH/2; |
|
half2 weight[BLOCKWIDTH_half]; |
|
|
|
for (int b = 0; b < batch; ++b){ |
|
for (int head = 0; head < heads; ++head){ |
|
int batch_shift = b * heads + head; |
|
|
|
for (k = 0; k < BLOCKWIDTH_half; ++k){ |
|
int w_index1 = batch_shift * height * width + i + (2 * k) * width; |
|
int w_index2 = batch_shift * height * width + i + ((2 * k + 1) * width); |
|
int zero_index1 = batch_shift * height + h + 2*k; |
|
int zero_index2 = batch_shift * height + h + 2*k+1; |
|
|
|
if (w_index1 >= weight_total || (2 * k + h)>=height) { |
|
weight[k]=__float2half2_rn(0); |
|
} else{ |
|
|
|
|
|
|
|
if (w_index2>=weight_total){ |
|
w_tmp1 = __float2half((as_unsigned(mat[w_index1]) - __half2float(zeros[zero_index1]))* __half2float(scales[zero_index1])); |
|
w_tmp2 = __float2half(0); |
|
weight[k] = __halves2half2(w_tmp1,w_tmp2); |
|
|
|
}else{ |
|
w_tmp1 = __int2half_rn(as_unsigned(mat[w_index1])); |
|
w_tmp2 = __int2half_rn(as_unsigned(mat[w_index2])); |
|
half zero1=zeros[zero_index1]; |
|
half zero2=zeros[zero_index2]; |
|
half scale1=scales[zero_index1]; |
|
half scale2=scales[zero_index2]; |
|
weight[k] = __hmul2(__hsub2(__halves2half2(w_tmp1,w_tmp2), __halves2half2(zero1,zero2)),__halves2half2(scale1,scale2)); |
|
|
|
|
|
} |
|
} |
|
} |
|
|
|
|
|
for (int vr = 0; vr < vec_row; ++vr){ |
|
float res=0; |
|
int vec_index = (batch_shift * vec_row + vr) * height + blockIdx.x * BLOCKWIDTH + tid; |
|
int out_index = (batch_shift * vec_row + vr) * width + w; |
|
|
|
if (vec_index < input_total) { |
|
|
|
blockvec[tid] = vec[vec_index]; |
|
|
|
} else { |
|
blockvec[tid] = __float2half(0); |
|
|
|
} |
|
__syncthreads(); |
|
if (out_index < out_total) { |
|
for (k = 0; k < BLOCKWIDTH_half; ++k){ |
|
half2 res2 = __hmul2(weight[k],__halves2half2(blockvec[2*k],blockvec[2*k+1])); |
|
res += __low2float(res2) + __high2float(res2); |
|
} |
|
atomicAdd(&mul[out_index], __float2half(res)); |
|
} |
|
__syncthreads(); |
|
} |
|
} |
|
} |
|
} |
|
|