yangapku commited on
Commit
5d8f58f
1 Parent(s): 41f8a43

init model

Browse files
config.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "QWenLMHeadModel"
4
+ ],
5
+ "auto_map": {
6
+ "AutoConfig": "configuration_qwen.QWenConfig",
7
+ "AutoModelForCausalLM": "modeling_qwen.QWenLMHeadModel"
8
+ },
9
+ "attn_dropout_prob": 0.0,
10
+ "bf16": false,
11
+ "emb_dropout_prob": 0.0,
12
+ "fp16": false,
13
+ "fp32": false,
14
+ "hidden_size": 2048,
15
+ "intermediate_size": 11008,
16
+ "initializer_range": 0.02,
17
+ "kv_channels": 128,
18
+ "layer_norm_epsilon": 1e-06,
19
+ "max_position_embeddings": 8192,
20
+ "model_type": "qwen",
21
+ "no_bias": true,
22
+ "num_attention_heads": 16,
23
+ "num_hidden_layers": 24,
24
+ "onnx_safe": null,
25
+ "rotary_emb_base": 10000,
26
+ "rotary_pct": 1.0,
27
+ "scale_attn_weights": true,
28
+ "seq_length": 8192,
29
+ "tie_word_embeddings": false,
30
+ "tokenizer_class": "QWenTokenizer",
31
+ "transformers_version": "4.32.0",
32
+ "use_cache": true,
33
+ "use_dynamic_ntk": true,
34
+ "use_flash_attn": "auto",
35
+ "use_logn_attn": true,
36
+ "vocab_size": 151936
37
+ }
configuration_qwen.py ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Alibaba Cloud.
2
+ #
3
+ # This source code is licensed under the license found in the
4
+ # LICENSE file in the root directory of this source tree.
5
+
6
+ from transformers import PretrainedConfig
7
+
8
+
9
+ class QWenConfig(PretrainedConfig):
10
+ model_type = "qwen"
11
+ keys_to_ignore_at_inference = ["past_key_values"]
12
+
13
+ def __init__(
14
+ self,
15
+ vocab_size=151936,
16
+ hidden_size=4096,
17
+ num_hidden_layers=32,
18
+ num_attention_heads=32,
19
+ emb_dropout_prob=0.0,
20
+ attn_dropout_prob=0.0,
21
+ layer_norm_epsilon=1e-6,
22
+ initializer_range=0.02,
23
+ max_position_embeddings=8192,
24
+ scale_attn_weights=True,
25
+ use_cache=True,
26
+ bf16=False,
27
+ fp16=False,
28
+ fp32=False,
29
+ kv_channels=128,
30
+ rotary_pct=1.0,
31
+ rotary_emb_base=10000,
32
+ use_dynamic_ntk=True,
33
+ use_logn_attn=True,
34
+ use_flash_attn="auto",
35
+ intermediate_size=22016,
36
+ no_bias=True,
37
+ tie_word_embeddings=False,
38
+ use_cache_quantization=False,
39
+ use_cache_kernel=False,
40
+ softmax_in_fp32=False,
41
+ **kwargs,
42
+ ):
43
+ self.vocab_size = vocab_size
44
+ self.hidden_size = hidden_size
45
+ self.intermediate_size = intermediate_size
46
+ self.num_hidden_layers = num_hidden_layers
47
+ self.num_attention_heads = num_attention_heads
48
+ self.emb_dropout_prob = emb_dropout_prob
49
+ self.attn_dropout_prob = attn_dropout_prob
50
+ self.layer_norm_epsilon = layer_norm_epsilon
51
+ self.initializer_range = initializer_range
52
+ self.scale_attn_weights = scale_attn_weights
53
+ self.use_cache = use_cache
54
+ self.max_position_embeddings = max_position_embeddings
55
+ self.bf16 = bf16
56
+ self.fp16 = fp16
57
+ self.fp32 = fp32
58
+ self.kv_channels = kv_channels
59
+ self.rotary_pct = rotary_pct
60
+ self.rotary_emb_base = rotary_emb_base
61
+ self.use_dynamic_ntk = use_dynamic_ntk
62
+ self.use_logn_attn = use_logn_attn
63
+ self.use_flash_attn = use_flash_attn
64
+ self.no_bias = no_bias
65
+ self.use_cache_quantization = use_cache_quantization
66
+ self.use_cache_kernel = use_cache_kernel
67
+ self.softmax_in_fp32 = softmax_in_fp32
68
+ super().__init__(
69
+ tie_word_embeddings=tie_word_embeddings,
70
+ **kwargs
71
+ )
cpp_kernels.py ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from torch.utils import cpp_extension
2
+ import pathlib
3
+ import os
4
+ import subprocess
5
+
6
+ def _get_cuda_bare_metal_version(cuda_dir):
7
+ raw_output = subprocess.check_output([cuda_dir + "/bin/nvcc", "-V"],
8
+ universal_newlines=True)
9
+ output = raw_output.split()
10
+ release_idx = output.index("release") + 1
11
+ release = output[release_idx].split(".")
12
+ bare_metal_major = release[0]
13
+ bare_metal_minor = release[1][0]
14
+
15
+ return raw_output, bare_metal_major, bare_metal_minor
16
+
17
+ def _create_build_dir(buildpath):
18
+ try:
19
+ os.mkdir(buildpath)
20
+ except OSError:
21
+ if not os.path.isdir(buildpath):
22
+ print(f"Creation of the build directory {buildpath} failed")
23
+
24
+ # Check if cuda 11 is installed for compute capability 8.0
25
+ cc_flag = []
26
+ _, bare_metal_major, bare_metal_minor = _get_cuda_bare_metal_version(cpp_extension.CUDA_HOME)
27
+ if int(bare_metal_major) >= 11:
28
+ cc_flag.append('-gencode')
29
+ cc_flag.append('arch=compute_80,code=sm_80')
30
+ if int(bare_metal_minor) >= 7:
31
+ cc_flag.append('-gencode')
32
+ cc_flag.append('arch=compute_90,code=sm_90')
33
+
34
+ # Build path
35
+ srcpath = pathlib.Path(__file__).parent.absolute()
36
+ buildpath = srcpath / 'build'
37
+ _create_build_dir(buildpath)
38
+
39
+ def _cpp_extention_load_helper(name, sources, extra_cuda_flags):
40
+ return cpp_extension.load(
41
+ name=name,
42
+ sources=sources,
43
+ build_directory=buildpath,
44
+ extra_cflags=['-O3', ],
45
+ extra_cuda_cflags=['-O3',
46
+ '-gencode', 'arch=compute_70,code=sm_70',
47
+ '--use_fast_math'] + extra_cuda_flags + cc_flag,
48
+ verbose=1
49
+ )
50
+
51
+ extra_flags = []
52
+
53
+ cache_autogptq_cuda_256_sources = ["./cache_autogptq_cuda_256.cpp",
54
+ "./cache_autogptq_cuda_kernel_256.cu"]
55
+ cache_autogptq_cuda_256 = _cpp_extention_load_helper("cache_autogptq_cuda_256", cache_autogptq_cuda_256_sources, extra_flags)
generation_config.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "chat_format": "chatml",
3
+ "eos_token_id": 151643,
4
+ "pad_token_id": 151643,
5
+ "max_window_size": 6144,
6
+ "max_new_tokens": 512,
7
+ "do_sample": true,
8
+ "top_k": 0,
9
+ "top_p": 0.8,
10
+ "repetition_penalty": 1.1,
11
+ "transformers_version": "4.31.0"
12
+ }
model-00001-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:afe102dfe02cbf973a5647a4ccef97dad0f088ae12a749e67000f25af3c6c997
3
+ size 2039259008
model-00002-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f710454106cacb0bee8138866573f1ecd453c3cd55f122b74e70a0e392d21435
3
+ size 1634419264
model.safetensors.index.json ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 3673657344
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00002-of-00002.safetensors",
7
+ "transformer.h.0.attn.c_attn.bias": "model-00001-of-00002.safetensors",
8
+ "transformer.h.0.attn.c_attn.weight": "model-00001-of-00002.safetensors",
9
+ "transformer.h.0.attn.c_proj.weight": "model-00001-of-00002.safetensors",
10
+ "transformer.h.0.ln_1.weight": "model-00001-of-00002.safetensors",
11
+ "transformer.h.0.ln_2.weight": "model-00001-of-00002.safetensors",
12
+ "transformer.h.0.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
13
+ "transformer.h.0.mlp.w1.weight": "model-00001-of-00002.safetensors",
14
+ "transformer.h.0.mlp.w2.weight": "model-00001-of-00002.safetensors",
15
+ "transformer.h.1.attn.c_attn.bias": "model-00001-of-00002.safetensors",
16
+ "transformer.h.1.attn.c_attn.weight": "model-00001-of-00002.safetensors",
17
+ "transformer.h.1.attn.c_proj.weight": "model-00001-of-00002.safetensors",
18
+ "transformer.h.1.ln_1.weight": "model-00001-of-00002.safetensors",
19
+ "transformer.h.1.ln_2.weight": "model-00001-of-00002.safetensors",
20
+ "transformer.h.1.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
21
+ "transformer.h.1.mlp.w1.weight": "model-00001-of-00002.safetensors",
22
+ "transformer.h.1.mlp.w2.weight": "model-00001-of-00002.safetensors",
23
+ "transformer.h.10.attn.c_attn.bias": "model-00001-of-00002.safetensors",
24
+ "transformer.h.10.attn.c_attn.weight": "model-00001-of-00002.safetensors",
25
+ "transformer.h.10.attn.c_proj.weight": "model-00001-of-00002.safetensors",
26
+ "transformer.h.10.ln_1.weight": "model-00001-of-00002.safetensors",
27
+ "transformer.h.10.ln_2.weight": "model-00001-of-00002.safetensors",
28
+ "transformer.h.10.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
29
+ "transformer.h.10.mlp.w1.weight": "model-00001-of-00002.safetensors",
30
+ "transformer.h.10.mlp.w2.weight": "model-00001-of-00002.safetensors",
31
+ "transformer.h.11.attn.c_attn.bias": "model-00001-of-00002.safetensors",
32
+ "transformer.h.11.attn.c_attn.weight": "model-00001-of-00002.safetensors",
33
+ "transformer.h.11.attn.c_proj.weight": "model-00001-of-00002.safetensors",
34
+ "transformer.h.11.ln_1.weight": "model-00001-of-00002.safetensors",
35
+ "transformer.h.11.ln_2.weight": "model-00001-of-00002.safetensors",
36
+ "transformer.h.11.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
37
+ "transformer.h.11.mlp.w1.weight": "model-00001-of-00002.safetensors",
38
+ "transformer.h.11.mlp.w2.weight": "model-00001-of-00002.safetensors",
39
+ "transformer.h.12.attn.c_attn.bias": "model-00001-of-00002.safetensors",
40
+ "transformer.h.12.attn.c_attn.weight": "model-00001-of-00002.safetensors",
41
+ "transformer.h.12.attn.c_proj.weight": "model-00001-of-00002.safetensors",
42
+ "transformer.h.12.ln_1.weight": "model-00001-of-00002.safetensors",
43
+ "transformer.h.12.ln_2.weight": "model-00001-of-00002.safetensors",
44
+ "transformer.h.12.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
45
+ "transformer.h.12.mlp.w1.weight": "model-00001-of-00002.safetensors",
46
+ "transformer.h.12.mlp.w2.weight": "model-00001-of-00002.safetensors",
47
+ "transformer.h.13.attn.c_attn.bias": "model-00001-of-00002.safetensors",
48
+ "transformer.h.13.attn.c_attn.weight": "model-00001-of-00002.safetensors",
49
+ "transformer.h.13.attn.c_proj.weight": "model-00001-of-00002.safetensors",
50
+ "transformer.h.13.ln_1.weight": "model-00001-of-00002.safetensors",
51
+ "transformer.h.13.ln_2.weight": "model-00001-of-00002.safetensors",
52
+ "transformer.h.13.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
53
+ "transformer.h.13.mlp.w1.weight": "model-00001-of-00002.safetensors",
54
+ "transformer.h.13.mlp.w2.weight": "model-00001-of-00002.safetensors",
55
+ "transformer.h.14.attn.c_attn.bias": "model-00002-of-00002.safetensors",
56
+ "transformer.h.14.attn.c_attn.weight": "model-00002-of-00002.safetensors",
57
+ "transformer.h.14.attn.c_proj.weight": "model-00002-of-00002.safetensors",
58
+ "transformer.h.14.ln_1.weight": "model-00001-of-00002.safetensors",
59
+ "transformer.h.14.ln_2.weight": "model-00002-of-00002.safetensors",
60
+ "transformer.h.14.mlp.c_proj.weight": "model-00002-of-00002.safetensors",
61
+ "transformer.h.14.mlp.w1.weight": "model-00002-of-00002.safetensors",
62
+ "transformer.h.14.mlp.w2.weight": "model-00002-of-00002.safetensors",
63
+ "transformer.h.15.attn.c_attn.bias": "model-00002-of-00002.safetensors",
64
+ "transformer.h.15.attn.c_attn.weight": "model-00002-of-00002.safetensors",
65
+ "transformer.h.15.attn.c_proj.weight": "model-00002-of-00002.safetensors",
66
+ "transformer.h.15.ln_1.weight": "model-00002-of-00002.safetensors",
67
+ "transformer.h.15.ln_2.weight": "model-00002-of-00002.safetensors",
68
+ "transformer.h.15.mlp.c_proj.weight": "model-00002-of-00002.safetensors",
69
+ "transformer.h.15.mlp.w1.weight": "model-00002-of-00002.safetensors",
70
+ "transformer.h.15.mlp.w2.weight": "model-00002-of-00002.safetensors",
71
+ "transformer.h.16.attn.c_attn.bias": "model-00002-of-00002.safetensors",
72
+ "transformer.h.16.attn.c_attn.weight": "model-00002-of-00002.safetensors",
73
+ "transformer.h.16.attn.c_proj.weight": "model-00002-of-00002.safetensors",
74
+ "transformer.h.16.ln_1.weight": "model-00002-of-00002.safetensors",
75
+ "transformer.h.16.ln_2.weight": "model-00002-of-00002.safetensors",
76
+ "transformer.h.16.mlp.c_proj.weight": "model-00002-of-00002.safetensors",
77
+ "transformer.h.16.mlp.w1.weight": "model-00002-of-00002.safetensors",
78
+ "transformer.h.16.mlp.w2.weight": "model-00002-of-00002.safetensors",
79
+ "transformer.h.17.attn.c_attn.bias": "model-00002-of-00002.safetensors",
80
+ "transformer.h.17.attn.c_attn.weight": "model-00002-of-00002.safetensors",
81
+ "transformer.h.17.attn.c_proj.weight": "model-00002-of-00002.safetensors",
82
+ "transformer.h.17.ln_1.weight": "model-00002-of-00002.safetensors",
83
+ "transformer.h.17.ln_2.weight": "model-00002-of-00002.safetensors",
84
+ "transformer.h.17.mlp.c_proj.weight": "model-00002-of-00002.safetensors",
85
+ "transformer.h.17.mlp.w1.weight": "model-00002-of-00002.safetensors",
86
+ "transformer.h.17.mlp.w2.weight": "model-00002-of-00002.safetensors",
87
+ "transformer.h.18.attn.c_attn.bias": "model-00002-of-00002.safetensors",
88
+ "transformer.h.18.attn.c_attn.weight": "model-00002-of-00002.safetensors",
89
+ "transformer.h.18.attn.c_proj.weight": "model-00002-of-00002.safetensors",
90
+ "transformer.h.18.ln_1.weight": "model-00002-of-00002.safetensors",
91
+ "transformer.h.18.ln_2.weight": "model-00002-of-00002.safetensors",
92
+ "transformer.h.18.mlp.c_proj.weight": "model-00002-of-00002.safetensors",
93
+ "transformer.h.18.mlp.w1.weight": "model-00002-of-00002.safetensors",
94
+ "transformer.h.18.mlp.w2.weight": "model-00002-of-00002.safetensors",
95
+ "transformer.h.19.attn.c_attn.bias": "model-00002-of-00002.safetensors",
96
+ "transformer.h.19.attn.c_attn.weight": "model-00002-of-00002.safetensors",
97
+ "transformer.h.19.attn.c_proj.weight": "model-00002-of-00002.safetensors",
98
+ "transformer.h.19.ln_1.weight": "model-00002-of-00002.safetensors",
99
+ "transformer.h.19.ln_2.weight": "model-00002-of-00002.safetensors",
100
+ "transformer.h.19.mlp.c_proj.weight": "model-00002-of-00002.safetensors",
101
+ "transformer.h.19.mlp.w1.weight": "model-00002-of-00002.safetensors",
102
+ "transformer.h.19.mlp.w2.weight": "model-00002-of-00002.safetensors",
103
+ "transformer.h.2.attn.c_attn.bias": "model-00001-of-00002.safetensors",
104
+ "transformer.h.2.attn.c_attn.weight": "model-00001-of-00002.safetensors",
105
+ "transformer.h.2.attn.c_proj.weight": "model-00001-of-00002.safetensors",
106
+ "transformer.h.2.ln_1.weight": "model-00001-of-00002.safetensors",
107
+ "transformer.h.2.ln_2.weight": "model-00001-of-00002.safetensors",
108
+ "transformer.h.2.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
109
+ "transformer.h.2.mlp.w1.weight": "model-00001-of-00002.safetensors",
110
+ "transformer.h.2.mlp.w2.weight": "model-00001-of-00002.safetensors",
111
+ "transformer.h.20.attn.c_attn.bias": "model-00002-of-00002.safetensors",
112
+ "transformer.h.20.attn.c_attn.weight": "model-00002-of-00002.safetensors",
113
+ "transformer.h.20.attn.c_proj.weight": "model-00002-of-00002.safetensors",
114
+ "transformer.h.20.ln_1.weight": "model-00002-of-00002.safetensors",
115
+ "transformer.h.20.ln_2.weight": "model-00002-of-00002.safetensors",
116
+ "transformer.h.20.mlp.c_proj.weight": "model-00002-of-00002.safetensors",
117
+ "transformer.h.20.mlp.w1.weight": "model-00002-of-00002.safetensors",
118
+ "transformer.h.20.mlp.w2.weight": "model-00002-of-00002.safetensors",
119
+ "transformer.h.21.attn.c_attn.bias": "model-00002-of-00002.safetensors",
120
+ "transformer.h.21.attn.c_attn.weight": "model-00002-of-00002.safetensors",
121
+ "transformer.h.21.attn.c_proj.weight": "model-00002-of-00002.safetensors",
122
+ "transformer.h.21.ln_1.weight": "model-00002-of-00002.safetensors",
123
+ "transformer.h.21.ln_2.weight": "model-00002-of-00002.safetensors",
124
+ "transformer.h.21.mlp.c_proj.weight": "model-00002-of-00002.safetensors",
125
+ "transformer.h.21.mlp.w1.weight": "model-00002-of-00002.safetensors",
126
+ "transformer.h.21.mlp.w2.weight": "model-00002-of-00002.safetensors",
127
+ "transformer.h.22.attn.c_attn.bias": "model-00002-of-00002.safetensors",
128
+ "transformer.h.22.attn.c_attn.weight": "model-00002-of-00002.safetensors",
129
+ "transformer.h.22.attn.c_proj.weight": "model-00002-of-00002.safetensors",
130
+ "transformer.h.22.ln_1.weight": "model-00002-of-00002.safetensors",
131
+ "transformer.h.22.ln_2.weight": "model-00002-of-00002.safetensors",
132
+ "transformer.h.22.mlp.c_proj.weight": "model-00002-of-00002.safetensors",
133
+ "transformer.h.22.mlp.w1.weight": "model-00002-of-00002.safetensors",
134
+ "transformer.h.22.mlp.w2.weight": "model-00002-of-00002.safetensors",
135
+ "transformer.h.23.attn.c_attn.bias": "model-00002-of-00002.safetensors",
136
+ "transformer.h.23.attn.c_attn.weight": "model-00002-of-00002.safetensors",
137
+ "transformer.h.23.attn.c_proj.weight": "model-00002-of-00002.safetensors",
138
+ "transformer.h.23.ln_1.weight": "model-00002-of-00002.safetensors",
139
+ "transformer.h.23.ln_2.weight": "model-00002-of-00002.safetensors",
140
+ "transformer.h.23.mlp.c_proj.weight": "model-00002-of-00002.safetensors",
141
+ "transformer.h.23.mlp.w1.weight": "model-00002-of-00002.safetensors",
142
+ "transformer.h.23.mlp.w2.weight": "model-00002-of-00002.safetensors",
143
+ "transformer.h.3.attn.c_attn.bias": "model-00001-of-00002.safetensors",
144
+ "transformer.h.3.attn.c_attn.weight": "model-00001-of-00002.safetensors",
145
+ "transformer.h.3.attn.c_proj.weight": "model-00001-of-00002.safetensors",
146
+ "transformer.h.3.ln_1.weight": "model-00001-of-00002.safetensors",
147
+ "transformer.h.3.ln_2.weight": "model-00001-of-00002.safetensors",
148
+ "transformer.h.3.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
149
+ "transformer.h.3.mlp.w1.weight": "model-00001-of-00002.safetensors",
150
+ "transformer.h.3.mlp.w2.weight": "model-00001-of-00002.safetensors",
151
+ "transformer.h.4.attn.c_attn.bias": "model-00001-of-00002.safetensors",
152
+ "transformer.h.4.attn.c_attn.weight": "model-00001-of-00002.safetensors",
153
+ "transformer.h.4.attn.c_proj.weight": "model-00001-of-00002.safetensors",
154
+ "transformer.h.4.ln_1.weight": "model-00001-of-00002.safetensors",
155
+ "transformer.h.4.ln_2.weight": "model-00001-of-00002.safetensors",
156
+ "transformer.h.4.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
157
+ "transformer.h.4.mlp.w1.weight": "model-00001-of-00002.safetensors",
158
+ "transformer.h.4.mlp.w2.weight": "model-00001-of-00002.safetensors",
159
+ "transformer.h.5.attn.c_attn.bias": "model-00001-of-00002.safetensors",
160
+ "transformer.h.5.attn.c_attn.weight": "model-00001-of-00002.safetensors",
161
+ "transformer.h.5.attn.c_proj.weight": "model-00001-of-00002.safetensors",
162
+ "transformer.h.5.ln_1.weight": "model-00001-of-00002.safetensors",
163
+ "transformer.h.5.ln_2.weight": "model-00001-of-00002.safetensors",
164
+ "transformer.h.5.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
165
+ "transformer.h.5.mlp.w1.weight": "model-00001-of-00002.safetensors",
166
+ "transformer.h.5.mlp.w2.weight": "model-00001-of-00002.safetensors",
167
+ "transformer.h.6.attn.c_attn.bias": "model-00001-of-00002.safetensors",
168
+ "transformer.h.6.attn.c_attn.weight": "model-00001-of-00002.safetensors",
169
+ "transformer.h.6.attn.c_proj.weight": "model-00001-of-00002.safetensors",
170
+ "transformer.h.6.ln_1.weight": "model-00001-of-00002.safetensors",
171
+ "transformer.h.6.ln_2.weight": "model-00001-of-00002.safetensors",
172
+ "transformer.h.6.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
173
+ "transformer.h.6.mlp.w1.weight": "model-00001-of-00002.safetensors",
174
+ "transformer.h.6.mlp.w2.weight": "model-00001-of-00002.safetensors",
175
+ "transformer.h.7.attn.c_attn.bias": "model-00001-of-00002.safetensors",
176
+ "transformer.h.7.attn.c_attn.weight": "model-00001-of-00002.safetensors",
177
+ "transformer.h.7.attn.c_proj.weight": "model-00001-of-00002.safetensors",
178
+ "transformer.h.7.ln_1.weight": "model-00001-of-00002.safetensors",
179
+ "transformer.h.7.ln_2.weight": "model-00001-of-00002.safetensors",
180
+ "transformer.h.7.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
181
+ "transformer.h.7.mlp.w1.weight": "model-00001-of-00002.safetensors",
182
+ "transformer.h.7.mlp.w2.weight": "model-00001-of-00002.safetensors",
183
+ "transformer.h.8.attn.c_attn.bias": "model-00001-of-00002.safetensors",
184
+ "transformer.h.8.attn.c_attn.weight": "model-00001-of-00002.safetensors",
185
+ "transformer.h.8.attn.c_proj.weight": "model-00001-of-00002.safetensors",
186
+ "transformer.h.8.ln_1.weight": "model-00001-of-00002.safetensors",
187
+ "transformer.h.8.ln_2.weight": "model-00001-of-00002.safetensors",
188
+ "transformer.h.8.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
189
+ "transformer.h.8.mlp.w1.weight": "model-00001-of-00002.safetensors",
190
+ "transformer.h.8.mlp.w2.weight": "model-00001-of-00002.safetensors",
191
+ "transformer.h.9.attn.c_attn.bias": "model-00001-of-00002.safetensors",
192
+ "transformer.h.9.attn.c_attn.weight": "model-00001-of-00002.safetensors",
193
+ "transformer.h.9.attn.c_proj.weight": "model-00001-of-00002.safetensors",
194
+ "transformer.h.9.ln_1.weight": "model-00001-of-00002.safetensors",
195
+ "transformer.h.9.ln_2.weight": "model-00001-of-00002.safetensors",
196
+ "transformer.h.9.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
197
+ "transformer.h.9.mlp.w1.weight": "model-00001-of-00002.safetensors",
198
+ "transformer.h.9.mlp.w2.weight": "model-00001-of-00002.safetensors",
199
+ "transformer.ln_f.weight": "model-00002-of-00002.safetensors",
200
+ "transformer.wte.weight": "model-00001-of-00002.safetensors"
201
+ }
202
+ }
modeling_qwen.py ADDED
@@ -0,0 +1,1372 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Alibaba Cloud.
2
+ #
3
+ # This source code is licensed under the license found in the
4
+ # LICENSE file in the root directory of this source tree.
5
+
6
+ import copy
7
+ import importlib
8
+ import math
9
+ import pathlib
10
+ from typing import TYPE_CHECKING, Optional, Tuple, Union, Callable, List, Any, Generator
11
+
12
+ import torch
13
+ import torch.nn.functional as F
14
+ import torch.utils.checkpoint
15
+ import warnings
16
+ from torch.cuda.amp import autocast
17
+
18
+ from torch.nn import CrossEntropyLoss
19
+ from transformers import PreTrainedTokenizer, GenerationConfig, StoppingCriteriaList
20
+ from transformers.generation.logits_process import LogitsProcessorList
21
+
22
+ if TYPE_CHECKING:
23
+ from transformers.generation.streamers import BaseStreamer
24
+ from transformers.generation.utils import GenerateOutput
25
+ from transformers.modeling_outputs import (
26
+ BaseModelOutputWithPast,
27
+ CausalLMOutputWithPast,
28
+ )
29
+ from transformers.modeling_utils import PreTrainedModel
30
+ from transformers.utils import logging
31
+
32
+ try:
33
+ from einops import rearrange
34
+ except ImportError:
35
+ rearrange = None
36
+ from torch import nn
37
+
38
+ SUPPORT_CUDA = torch.cuda.is_available()
39
+ SUPPORT_BF16 = SUPPORT_CUDA and torch.cuda.is_bf16_supported()
40
+ SUPPORT_FP16 = SUPPORT_CUDA and torch.cuda.get_device_capability(0)[0] >= 7
41
+ SUPPORT_TORCH2 = hasattr(torch, '__version__') and int(torch.__version__.split(".")[0]) >= 2
42
+
43
+
44
+ from .configuration_qwen import QWenConfig
45
+ from .qwen_generation_utils import (
46
+ HistoryType,
47
+ make_context,
48
+ decode_tokens,
49
+ get_stop_words_ids,
50
+ StopWordsLogitsProcessor,
51
+ )
52
+
53
+
54
+ logger = logging.get_logger(__name__)
55
+
56
+ _CHECKPOINT_FOR_DOC = "qwen"
57
+ _CONFIG_FOR_DOC = "QWenConfig"
58
+
59
+ QWen_PRETRAINED_MODEL_ARCHIVE_LIST = ["qwen-7b"]
60
+
61
+ _ERROR_BAD_CHAT_FORMAT = """\
62
+ We detect you are probably using the pretrained model (rather than chat model) for chatting, since the chat_format in generation_config is not "chatml".
63
+ If you are directly using the model downloaded from Huggingface, please make sure you are using our "Qwen/Qwen-7B-Chat" Huggingface model (rather than "Qwen/Qwen-7B") when you call model.chat().
64
+ 我们检测到您可能在使用预训练模型(而非chat模型)进行多轮chat,因为您当前在generation_config指定的chat_format,并未设置为我们在对话中所支持的"chatml"格式。
65
+ 如果您在直接使用我们从Huggingface提供的模型,请确保您在调用model.chat()时,使用的是"Qwen/Qwen-7B-Chat"模型(而非"Qwen/Qwen-7B"预训练模型)。
66
+ """
67
+
68
+ _SENTINEL = object()
69
+ _ERROR_STREAM_IN_CHAT = """\
70
+ Pass argument `stream` to model.chat() is buggy, deprecated, and marked for removal. Please use model.chat_stream(...) instead of model.chat(..., stream=True).
71
+ 向model.chat()传入参数stream的用法可能存在Bug,该用法已被废弃,将在未来被移除。请使用model.chat_stream(...)代替model.chat(..., stream=True)。
72
+ """
73
+
74
+ _ERROR_INPUT_CPU_QUERY_WITH_FLASH_ATTN_ACTIVATED = """\
75
+ We detect you have activated flash attention support, but running model computation on CPU. Please make sure that your input data has been placed on GPU. If you actually want to run CPU computation, please following the readme and set device_map="cpu" to disable flash attention when loading the model (calling AutoModelForCausalLM.from_pretrained).
76
+ 检测到您的模型已激活了flash attention支持,但正在执行CPU运算任务。如使用flash attention,请您确认模型输入已经传到GPU上。如果您确认要执行CPU运算,请您在载入模型(调用AutoModelForCausalLM.from_pretrained)时,按照readme说法,指定device_map="cpu"以禁用flash attention。
77
+ """
78
+
79
+ apply_rotary_emb_func = None
80
+ rms_norm = None
81
+ flash_attn_unpadded_func = None
82
+
83
+ def _import_flash_attn():
84
+ global apply_rotary_emb_func, rms_norm, flash_attn_unpadded_func
85
+ try:
86
+ from flash_attn.layers.rotary import apply_rotary_emb_func as __apply_rotary_emb_func
87
+ apply_rotary_emb_func = __apply_rotary_emb_func
88
+ except ImportError:
89
+ logger.warn(
90
+ "Warning: import flash_attn rotary fail, please install FlashAttention rotary to get higher efficiency "
91
+ "https://github.com/Dao-AILab/flash-attention/tree/main/csrc/rotary"
92
+ )
93
+
94
+ try:
95
+ from flash_attn.ops.rms_norm import rms_norm as __rms_norm
96
+ rms_norm = __rms_norm
97
+ except ImportError:
98
+ logger.warn(
99
+ "Warning: import flash_attn rms_norm fail, please install FlashAttention layer_norm to get higher efficiency "
100
+ "https://github.com/Dao-AILab/flash-attention/tree/main/csrc/layer_norm"
101
+ )
102
+
103
+ try:
104
+ import flash_attn
105
+ if not hasattr(flash_attn, '__version__'):
106
+ from flash_attn.flash_attn_interface import flash_attn_unpadded_func as __flash_attn_unpadded_func
107
+ else:
108
+ if int(flash_attn.__version__.split(".")[0]) >= 2:
109
+ from flash_attn.flash_attn_interface import flash_attn_varlen_func as __flash_attn_unpadded_func
110
+ else:
111
+ from flash_attn.flash_attn_interface import flash_attn_unpadded_func as __flash_attn_unpadded_func
112
+ flash_attn_unpadded_func = __flash_attn_unpadded_func
113
+ except ImportError:
114
+ logger.warn(
115
+ "Warning: import flash_attn fail, please install FlashAttention to get higher efficiency "
116
+ "https://github.com/Dao-AILab/flash-attention"
117
+ )
118
+
119
+ def quantize_cache_v(fdata, bits, qmax, qmin):
120
+ # b, s, head, h-dim->b, head, s, h-dim
121
+ qtype = torch.uint8
122
+ device = fdata.device
123
+ shape = fdata.shape
124
+
125
+ fdata_cal = torch.flatten(fdata, 2)
126
+ fmax = torch.amax(fdata_cal, dim=-1, keepdim=True)
127
+ fmin = torch.amin(fdata_cal, dim=-1, keepdim=True)
128
+ # Compute params
129
+ if qmax.device != fmax.device:
130
+ qmax = qmax.to(device)
131
+ qmin = qmin.to(device)
132
+ scale = (fmax - fmin) / (qmax - qmin)
133
+ zero = qmin - fmin / scale
134
+ scale = scale.unsqueeze(-1).repeat(1,1,shape[2],1).contiguous()
135
+ zero = zero.unsqueeze(-1).repeat(1,1,shape[2],1).contiguous()
136
+ # Quantize
137
+ res_data = fdata / scale + zero
138
+ qdata = torch.clamp(res_data, qmin, qmax).to(qtype)
139
+ return qdata.contiguous(), scale, zero
140
+
141
+ def dequantize_cache_torch(qdata, scale, zero):
142
+ data = scale * (qdata - zero)
143
+ return data
144
+
145
+ class FlashSelfAttention(torch.nn.Module):
146
+ def __init__(
147
+ self,
148
+ causal=False,
149
+ softmax_scale=None,
150
+ attention_dropout=0.0,
151
+ ):
152
+ super().__init__()
153
+ assert flash_attn_unpadded_func is not None, (
154
+ "Please install FlashAttention first, " "e.g., with pip install flash-attn"
155
+ )
156
+ assert (
157
+ rearrange is not None
158
+ ), "Please install einops first, e.g., with pip install einops"
159
+ self.causal = causal
160
+ self.softmax_scale = softmax_scale
161
+ self.dropout_p = attention_dropout
162
+
163
+ def unpad_input(self, hidden_states, attention_mask):
164
+ valid_mask = attention_mask.squeeze(1).squeeze(1).eq(0)
165
+ seqlens_in_batch = valid_mask.sum(dim=-1, dtype=torch.int32)
166
+ indices = torch.nonzero(valid_mask.flatten(), as_tuple=False).flatten()
167
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
168
+ cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
169
+ hidden_states = hidden_states[indices]
170
+ return hidden_states, indices, cu_seqlens, max_seqlen_in_batch
171
+
172
+ def pad_input(self, hidden_states, indices, batch, seqlen):
173
+ output = torch.zeros(batch * seqlen, *hidden_states.shape[1:], device=hidden_states.device,
174
+ dtype=hidden_states.dtype)
175
+ output[indices] = hidden_states
176
+ return rearrange(output, '(b s) ... -> b s ...', b=batch)
177
+
178
+ def forward(self, q, k, v, attention_mask=None):
179
+ assert all((i.dtype in [torch.float16, torch.bfloat16] for i in (q, k, v)))
180
+ assert all((i.is_cuda for i in (q, k, v)))
181
+ batch_size, seqlen_q = q.shape[0], q.shape[1]
182
+ seqlen_k = k.shape[1]
183
+ seqlen_out = seqlen_q
184
+
185
+ q, k, v = [rearrange(x, "b s ... -> (b s) ...") for x in [q, k, v]]
186
+ cu_seqlens_q = torch.arange(
187
+ 0,
188
+ (batch_size + 1) * seqlen_q,
189
+ step=seqlen_q,
190
+ dtype=torch.int32,
191
+ device=q.device,
192
+ )
193
+
194
+ if batch_size > 1 and attention_mask is not None:
195
+ k, indices_k, cu_seqlens_k, seqlen_k = self.unpad_input(k, attention_mask)
196
+ if q.size(0) == v.size(0):
197
+ q = q[indices_k]
198
+ cu_seqlens_q = cu_seqlens_k
199
+ seqlen_q = seqlen_k
200
+ v = v[indices_k]
201
+ else:
202
+ cu_seqlens_k = torch.arange(
203
+ 0,
204
+ (batch_size + 1) * seqlen_k,
205
+ step=seqlen_k,
206
+ dtype=torch.int32,
207
+ device=q.device,
208
+ )
209
+
210
+ if self.training:
211
+ assert seqlen_k == seqlen_q
212
+ is_causal = self.causal
213
+ dropout_p = self.dropout_p
214
+ else:
215
+ is_causal = seqlen_q == seqlen_k
216
+ dropout_p = 0
217
+
218
+ output = flash_attn_unpadded_func(
219
+ q,
220
+ k,
221
+ v,
222
+ cu_seqlens_q,
223
+ cu_seqlens_k,
224
+ seqlen_q,
225
+ seqlen_k,
226
+ dropout_p,
227
+ softmax_scale=self.softmax_scale,
228
+ causal=is_causal,
229
+ )
230
+ if batch_size > 1 and attention_mask is not None and seqlen_q == seqlen_k:
231
+ output = self.pad_input(output, indices_k, batch_size, seqlen_out)
232
+ else:
233
+ new_shape = (batch_size, output.shape[0] // batch_size) + output.shape[1:]
234
+ output = output.view(new_shape)
235
+ return output
236
+
237
+
238
+ class QWenAttention(nn.Module):
239
+ def __init__(self, config):
240
+ super().__init__()
241
+
242
+ self.register_buffer("masked_bias", torch.tensor(-1e4), persistent=False)
243
+ self.seq_length = config.seq_length
244
+
245
+ self.hidden_size = config.hidden_size
246
+ self.split_size = config.hidden_size
247
+ self.num_heads = config.num_attention_heads
248
+ self.head_dim = self.hidden_size // self.num_heads
249
+
250
+ self.use_flash_attn = config.use_flash_attn
251
+ self.scale_attn_weights = True
252
+
253
+ self.projection_size = config.kv_channels * config.num_attention_heads
254
+
255
+ assert self.projection_size % config.num_attention_heads == 0
256
+ self.hidden_size_per_attention_head = (
257
+ self.projection_size // config.num_attention_heads
258
+ )
259
+
260
+ self.c_attn = nn.Linear(config.hidden_size, 3 * self.projection_size)
261
+
262
+ self.c_proj = nn.Linear(
263
+ config.hidden_size, self.projection_size, bias=not config.no_bias
264
+ )
265
+
266
+ self.is_fp32 = not (config.bf16 or config.fp16)
267
+ if (
268
+ self.use_flash_attn
269
+ and flash_attn_unpadded_func is not None
270
+ and not self.is_fp32
271
+ ):
272
+ self.core_attention_flash = FlashSelfAttention(
273
+ causal=True, attention_dropout=config.attn_dropout_prob
274
+ )
275
+ self.bf16 = config.bf16
276
+
277
+ self.use_dynamic_ntk = config.use_dynamic_ntk
278
+ self.use_logn_attn = config.use_logn_attn
279
+
280
+ logn_list = [
281
+ math.log(i, self.seq_length) if i > self.seq_length else 1
282
+ for i in range(1, 32768)
283
+ ]
284
+ logn_tensor = torch.tensor(logn_list)[None, :, None, None]
285
+ self.register_buffer("logn_tensor", logn_tensor, persistent=False)
286
+
287
+ self.attn_dropout = nn.Dropout(config.attn_dropout_prob)
288
+ self.softmax_in_fp32 = config.softmax_in_fp32 if hasattr(config, 'softmax_in_fp32') else False
289
+ self.use_cache_quantization = config.use_cache_quantization if hasattr(config, 'use_cache_quantization') else False
290
+ self.use_cache_kernel = config.use_cache_kernel if hasattr(config,'use_cache_kernel') else False
291
+ cache_dtype = torch.float
292
+ if self.bf16:
293
+ cache_dtype=torch.bfloat16
294
+ elif config.fp16:
295
+ cache_dtype = torch.float16
296
+ self.cache_qmax = torch.tensor(torch.iinfo(torch.uint8).max, dtype=cache_dtype)
297
+ self.cache_qmin = torch.tensor(torch.iinfo(torch.uint8).min, dtype=cache_dtype)
298
+
299
+ if config.use_cache_quantization and config.use_cache_kernel:
300
+ # pre check if the support files existing
301
+ module_root = pathlib.Path(__file__).parent
302
+ src_files = ("cache_autogptq_cuda_256.cpp", "cache_autogptq_cuda_kernel_256.cu")
303
+ if any(not (module_root/src).is_file() for src in src_files):
304
+ warnings.warn("KV cache kernel source files (.cpp and .cu) not found.")
305
+ self.cache_kernels = None
306
+ else:
307
+ try:
308
+ from .cpp_kernels import cache_autogptq_cuda_256
309
+ self.cache_kernels = cache_autogptq_cuda_256
310
+ except ImportError:
311
+ warnings.warn("Failed to import KV cache kernels.")
312
+ self.cache_kernels = None
313
+
314
+ def _attn(self, query, key, value, registered_causal_mask, attention_mask=None, head_mask=None):
315
+ device = query.device
316
+ if self.use_cache_quantization:
317
+ qk, qk_scale, qk_zero = key
318
+ if self.use_cache_kernel and self.cache_kernels is not None:
319
+ shape = query.shape[:-1] + (qk.shape[-2],)
320
+ attn_weights = torch.zeros(shape, dtype=torch.float16, device=device)
321
+ self.cache_kernels.vecquant8matmul_batched_faster_old(
322
+ query.contiguous() if query.dtype == torch.float16 else query.to(torch.float16).contiguous(),
323
+ qk.transpose(-1, -2).contiguous(),
324
+ attn_weights,
325
+ qk_scale.contiguous() if qk_scale.dtype == torch.float16 else qk_scale.to(torch.float16).contiguous(),
326
+ qk_zero.contiguous()if qk_zero.dtype == torch.float16 else qk_zero.to(torch.float16).contiguous())
327
+ # attn_weights = attn_weights.to(query.dtype).contiguous()
328
+ else:
329
+ key = dequantize_cache_torch(qk, qk_scale, qk_zero)
330
+ attn_weights = torch.matmul(query, key.transpose(-1, -2))
331
+ else:
332
+ attn_weights = torch.matmul(query, key.transpose(-1, -2))
333
+
334
+ if self.scale_attn_weights:
335
+ if self.use_cache_quantization:
336
+ size_temp = value[0].size(-1)
337
+ else:
338
+ size_temp = value.size(-1)
339
+ attn_weights = attn_weights / torch.full(
340
+ [],
341
+ size_temp ** 0.5,
342
+ dtype=attn_weights.dtype,
343
+ device=attn_weights.device,
344
+ )
345
+ if self.use_cache_quantization:
346
+ query_length, key_length = query.size(-2), key[0].size(-2)
347
+ else:
348
+ query_length, key_length = query.size(-2), key.size(-2)
349
+ causal_mask = registered_causal_mask[
350
+ :, :, key_length - query_length : key_length, :key_length
351
+ ]
352
+ mask_value = torch.finfo(attn_weights.dtype).min
353
+ mask_value = torch.full([], mask_value, dtype=attn_weights.dtype).to(
354
+ attn_weights.device
355
+ )
356
+ attn_weights = torch.where(
357
+ causal_mask, attn_weights.to(attn_weights.dtype), mask_value
358
+ )
359
+
360
+ if attention_mask is not None:
361
+ attn_weights = attn_weights + attention_mask
362
+
363
+ if self.softmax_in_fp32:
364
+ attn_weights = nn.functional.softmax(attn_weights.float(), dim=-1)
365
+ else:
366
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1)
367
+
368
+ attn_weights = attn_weights.type(query.dtype)
369
+ attn_weights = self.attn_dropout(attn_weights)
370
+
371
+ if head_mask is not None:
372
+ attn_weights = attn_weights * head_mask
373
+
374
+ if self.use_cache_quantization:
375
+ qv, qv_scale, qv_zero = value
376
+ if self.use_cache_kernel and self.cache_kernels is not None:
377
+ shape = attn_weights.shape[:-1] + (query.shape[-1],)
378
+ attn_output = torch.zeros(shape, dtype=torch.float16, device=device)
379
+ self.cache_kernels.vecquant8matmul_batched_column_compression_faster_old(
380
+ attn_weights.contiguous() if attn_weights.dtype == torch.float16 else attn_weights.to(torch.float16).contiguous(),
381
+ qv.contiguous(), # dtype: int32
382
+ attn_output,
383
+ qv_scale.contiguous() if qv_scale.dtype == torch.float16 else qv_scale.to(torch.float16).contiguous(),
384
+ qv_zero.contiguous() if qv_zero.dtype == torch.float16 else qv_zero.to(torch.float16).contiguous())
385
+ if attn_output.dtype != query.dtype:
386
+ attn_output = attn_output.to(query.dtype)
387
+ attn_weights = attn_weights.to(query.dtype)
388
+ else:
389
+ value = dequantize_cache_torch(qv, qv_scale, qv_zero)
390
+ attn_output = torch.matmul(attn_weights, value)
391
+ else:
392
+ attn_output = torch.matmul(attn_weights, value)
393
+
394
+ attn_output = attn_output.transpose(1, 2)
395
+
396
+ return attn_output, attn_weights
397
+
398
+ def _split_heads(self, tensor, num_heads, attn_head_size):
399
+ new_shape = tensor.size()[:-1] + (num_heads, attn_head_size)
400
+ tensor = tensor.view(new_shape)
401
+ return tensor
402
+
403
+ def _merge_heads(self, tensor, num_heads, attn_head_size):
404
+ tensor = tensor.contiguous()
405
+ new_shape = tensor.size()[:-2] + (num_heads * attn_head_size,)
406
+ return tensor.view(new_shape)
407
+
408
+ def forward(
409
+ self,
410
+ hidden_states: Optional[Tuple[torch.FloatTensor]],
411
+ rotary_pos_emb_list: Optional[List[List[torch.Tensor]]] = None,
412
+ layer_past: Optional[Tuple[torch.Tensor]] = None,
413
+ attention_mask: Optional[torch.FloatTensor] = None,
414
+ head_mask: Optional[torch.FloatTensor] = None,
415
+ encoder_hidden_states: Optional[torch.Tensor] = None,
416
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
417
+ output_attentions: Optional[bool] = False,
418
+ use_cache: Optional[bool] = False,
419
+ ):
420
+ mixed_x_layer = self.c_attn(hidden_states)
421
+
422
+ query, key, value = mixed_x_layer.split(self.split_size, dim=2)
423
+
424
+ query = self._split_heads(query, self.num_heads, self.head_dim)
425
+ key = self._split_heads(key, self.num_heads, self.head_dim)
426
+ value = self._split_heads(value, self.num_heads, self.head_dim)
427
+
428
+ if rotary_pos_emb_list is not None:
429
+ cur_len = query.shape[1]
430
+ if len(rotary_pos_emb_list) == 1:
431
+ rotary_pos_emb = rotary_pos_emb_list[0]
432
+ rotary_pos_emb = [i[:, -cur_len:, :, :] for i in rotary_pos_emb]
433
+ rotary_pos_emb = (rotary_pos_emb,) * 2
434
+ q_pos_emb, k_pos_emb = rotary_pos_emb
435
+ # Slice the pos emb for current inference
436
+ query = apply_rotary_pos_emb(query, q_pos_emb)
437
+ key = apply_rotary_pos_emb(key, k_pos_emb)
438
+ else:
439
+ query_list = []
440
+ key_list = []
441
+ for i, rotary_pos_emb in enumerate(rotary_pos_emb_list):
442
+ rotary_pos_emb = [i[:, -cur_len:, :, :] for i in rotary_pos_emb]
443
+ rotary_pos_emb = (rotary_pos_emb,) * 2
444
+ q_pos_emb, k_pos_emb = rotary_pos_emb
445
+ # Slice the pos emb for current inference
446
+ query_list += [apply_rotary_pos_emb(query[i:i+1, :, :], q_pos_emb)]
447
+ key_list += [apply_rotary_pos_emb(key[i:i+1, :, :], k_pos_emb)]
448
+ query = torch.cat(query_list, dim=0)
449
+ key = torch.cat(key_list, dim=0)
450
+
451
+ if self.use_cache_quantization:
452
+ key = quantize_cache_v(key.permute(0, 2, 1, 3),
453
+ bits=8,
454
+ qmin=self.cache_qmin,
455
+ qmax=self.cache_qmax)
456
+ value = quantize_cache_v(value.permute(0, 2, 1, 3),
457
+ bits=8,
458
+ qmin=self.cache_qmin,
459
+ qmax=self.cache_qmax)
460
+
461
+
462
+ if layer_past is not None:
463
+ past_key, past_value = layer_past[0], layer_past[1]
464
+ if self.use_cache_quantization:
465
+ # use_cache_quantization:
466
+ # present=((q_key,key_scale,key_zero_point),
467
+ # (q_value,value_scale,value_zero_point))
468
+ key = (torch.cat((past_key[0], key[0]), dim=2),
469
+ torch.cat((past_key[1], key[1]), dim=2),
470
+ torch.cat((past_key[2], key[2]), dim=2))
471
+ value = (torch.cat((past_value[0], value[0]), dim=2),
472
+ torch.cat((past_value[1], value[1]), dim=2),
473
+ torch.cat((past_value[2], value[2]), dim=2))
474
+ else:
475
+ # not use_cache_quantization:
476
+ # present=(key,value)
477
+ key = torch.cat((past_key, key), dim=1)
478
+ value = torch.cat((past_value, value), dim=1)
479
+
480
+ if use_cache:
481
+ present = (key, value)
482
+ else: