abideen commited on
Commit
8317b35
·
verified ·
1 Parent(s): 917bb53

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +332 -196
README.md CHANGED
@@ -1,199 +1,335 @@
1
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  library_name: transformers
3
- tags: []
4
  ---
5
-
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ license: cc-by-nc-4.0
3
+ base_model: mlabonne/NeuralMonarch-7B
4
+ tags:
5
+ - generated_from_trainer
6
+ - axolotl
7
+ - mistral
8
+ - instruct
9
+ - finetune
10
+ - chatml
11
+ - gpt4
12
+ - synthetic data
13
+ - distillation
14
+ model-index:
15
+ - name: AlphaMonarch-laser
16
+ results: []
17
+ datasets:
18
+ - argilla/OpenHermes2.5-dpo-binarized-alpha
19
+ language:
20
+ - en
21
  library_name: transformers
22
+ pipeline_tag: text-generation
23
  ---
24
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
25
+ should probably proofread and complete it, then remove this comment. -->
26
+
27
+ # AlphaMonarch-laser
28
+
29
+ ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/64e380b2e12618b261fa6ba0/62S_ExHO6NKCM3NhPDrds.jpeg)
30
+
31
+ AlphaMonarch-laser is a DPO fine-tuned of [mlabonne/NeuralMonarch-7B](https://huggingface.co/mlabonne/NeuralMonarch-7B/) using the [argilla/OpenHermes2.5-dpo-binarized-alpha](https://huggingface.co/datasets/argilla/OpenHermes2.5-dpo-binarized-alpha) preference dataset but achieves better performance then [mlabonne/AlphaMonarch-7B](https://huggingface.co/mlabonne/AlphaMonarch-7B/) using LaserQLoRA. I have fine-tuned this model only on half of the projections, but have achieved better results as compared to the version released by Maximme Labonne. I have trained this model for 1080 steps.
32
+
33
+ AlphaMonarch-laser is ranking 1 on YALL - [Yet Another LLM Leaderboard](https://huggingface.co/spaces/mlabonne/Yet_Another_LLM_Leaderboard).
34
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64e380b2e12618b261fa6ba0/Jgxw1FZRx7nNAdSh7nYt1.png)
35
+
36
+ ## 🏆 Evaluation results
37
+
38
+ # Nous Benchmark
39
+
40
+ ### AGIEVAL
41
+
42
+ | Task | Version | Metric | Value | StdErr |
43
+ |---------------------------------|---------|--------------|--------|--------|
44
+ | agieval_aqua_rat | 0 | acc | 28.35% | 2.83% |
45
+ | agieval_aqua_rat | 0 | acc_norm | 26.38% | 2.77% |
46
+ | agieval_logiqa_en | 0 | acc | 38.25% | 1.91% |
47
+ | agieval_logiqa_en | 0 | acc_norm | 38.10% | 1.90% |
48
+ | agieval_lsat_ar | 0 | acc | 23.91% | 2.82% |
49
+ | agieval_lsat_ar | 0 | acc_norm | 23.48% | 2.80% |
50
+ | agieval_lsat_lr | 0 | acc | 52.75% | 2.21% |
51
+ | agieval_lsat_lr | 0 | acc_norm | 53.92% | 2.21% |
52
+ | agieval_lsat_rc | 0 | acc | 66.91% | 2.87% |
53
+ | agieval_lsat_rc | 0 | acc_norm | 67.29% | 2.87% |
54
+ | agieval_sat_en | 0 | acc | 78.64% | 2.86% |
55
+ | agieval_sat_en | 0 | acc_norm | 78.64% | 2.86% |
56
+ | agieval_sat_en_without_passage | 0 | acc | 45.15% | 3.48% |
57
+ | agieval_sat_en_without_passage | 0 | acc_norm | 44.17% | 3.47% |
58
+ | agieval_sat_math | 0 | acc | 33.18% | 3.18% |
59
+ | agieval_sat_math | 0 | acc_norm | 31.36% | 3.14% |
60
+ Average: 28.41%
61
+
62
+ ### GPT4ALL
63
+
64
+ | Task | Version | Metric | Value | StdErr |
65
+ |--------------|---------|----------|-------|--------|
66
+ | arc_challenge| 0 | acc | 66.30%| ± 1.38%|
67
+ | | | acc_norm | 68.26%| ± 1.36%|
68
+ | arc_easy | 0 | acc | 86.57%| ± 0.70%|
69
+ | | | acc_norm | 80.81%| ± 0.81%|
70
+ | boolq | 1 | acc | 87.16%| ± 0.59%|
71
+ | hellaswag | 0 | acc | 69.60%| ± 0.46%|
72
+ | | | acc_norm | 87.45%| ± 0.33%|
73
+ | openbookqa | 0 | acc | 39.20%| ± 2.19%|
74
+ | | | acc_norm | 49.60%| ± 2.24%|
75
+ | piqa | 0 | acc | 83.03%| ± 0.88%|
76
+ | | | acc_norm | 84.87%| ± 0.84%|
77
+ | winogrande | 0 | acc | 81.06%| ± 1.10%|
78
+ Average: 76.98%
79
+
80
+ ### TRUTHFUL-QA
81
+
82
+ | Task | Version | Metric | Value | StdErr |
83
+ |---------------|---------|--------|-------|--------|
84
+ | truthfulqa_mc | 1 | mc1 | 63.04%| ± 1.69%|
85
+ | truthfulqa_mc | 1 | mc2 | 78.39%| ± 1.37%|
86
+ Average: 70.71%
87
+
88
+ ### BIGBENCH
89
+
90
+ | Task | Version | Metric | Value | StdErr |
91
+ |------------------------------------------------|---------|-----------------------|-------|--------------------|
92
+ | bigbench_causal_judgement | 0 | multiple_choice_grade| 60.00%| ± 3.56% |
93
+ | bigbench_date_understanding | 0 | multiple_choice_grade| 62.06%| ± 2.53% |
94
+ | bigbench_disambiguation_qa | 0 | multiple_choice_grade| 54.26%| ± 3.11% |
95
+ | bigbench_geometric_shapes | 0 | multiple_choice_grade| 23.96%| ± 2.26% |
96
+ | | | exact_str_match | 0.00% | ± 0.00% |
97
+ | bigbench_logical_deduction_five_objects | 0 | multiple_choice_grade| 32.80%| ± 2.10% |
98
+ | bigbench_logical_deduction_seven_objects | 0 | multiple_choice_grade| 23.86%| ± 1.61% |
99
+ | bigbench_logical_deduction_three_objects | 0 | multiple_choice_grade| 59.33%| ± 2.84% |
100
+ | bigbench_movie_recommendation | 0 | multiple_choice_grade| 58.00%| ± 2.21% |
101
+ | bigbench_navigate | 0 | multiple_choice_grade| 56.00%| ± 1.57% |
102
+ | bigbench_reasoning_about_colored_objects | 0 | multiple_choice_grade| 69.20%| ± 1.03% |
103
+ | bigbench_ruin_names | 0 | multiple_choice_grade| 55.36%| ± 2.35% |
104
+ | bigbench_salient_translation_error_detection | 0 | multiple_choice_grade| 41.48%| ± 1.56% |
105
+ | bigbench_snarks | 0 | multiple_choice_grade| 73.48%| ± 3.29% |
106
+ | bigbench_sports_understanding | 0 | multiple_choice_grade| 76.06%| ± 1.36% |
107
+ | bigbench_temporal_sequences | 0 | multiple_choice_grade| 55.50%| ± 1.57% |
108
+ | bigbench_tracking_shuffled_objects_five_objects| 0 | multiple_choice_grade| 23.28%| ± 1.20% |
109
+ | bigbench_tracking_shuffled_objects_seven_objects| 0 | multiple_choice_grade| 19.37%| ± 0.94% |
110
+ | bigbench_tracking_shuffled_objects_three_objects| 0 | multiple_choice_grade| 59.33%| ± 2.84% |
111
+ Average: 55.37%
112
+
113
+ # Openllm Benchmark
114
+
115
+ | Task |Version| Metric |Value| |Stderr|
116
+ |-------------|------:|--------|----:|---|-----:|
117
+ |arc_challenge| 0|acc |70.12|± | 1.30|
118
+ | | |acc_norm|73.27|± | 1.29|
119
+ |hellaswag | 0|acc |71.80|± | 0.44|
120
+ | | |acc_norm|89.20|± | 0.30|
121
+ |gsm8k | 0|acc |66.77|± | 1.2 |
122
+ |winogrande | 0|acc |84.6 |± | 1.0 |
123
+
124
+ Average: 73.5%
125
+
126
+ ### TruthfulQA
127
+ | Task |Version|Metric|Value| |Stderr|
128
+ |-------------|------:|------|----:|---|-----:|
129
+ |truthfulqa_mc| 1|mc1 |62.79|± | 1.69|
130
+ | | |mc2 |77.90|± | 1.37|
131
+
132
+ ### Training hyperparameters
133
+
134
+ The following hyperparameters were used during training:
135
+ - learning_rate: 5e-07
136
+ - train_batch_size: 1
137
+ - eval_batch_size: 8
138
+ - seed: 42
139
+ - gradient_accumulation_steps: 8
140
+ - total_train_batch_size: 8
141
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
142
+ - lr_scheduler_type: cosine
143
+ - lr_scheduler_warmup_steps: 100
144
+ - training_steps: 1080
145
+
146
+
147
+
148
+ ### 📝 Axolotl Configuration
149
+
150
+ ```yaml
151
+ base_model: mlabonne/NeuralMonarch-7B
152
+ model_type: MistralForCausalLM
153
+ tokenizer_type: LlamaTokenizer
154
+ is_mistral_derived_model: true
155
+ load_in_8bit: false
156
+ load_in_4bit: true
157
+ strict: false
158
+ rl: dpo
159
+ chat_template: chatml
160
+ datasets:
161
+ - path: mlabonne/chatml-OpenHermes2.5-dpo-binarized-alpha
162
+ split: train
163
+ type: chatml.intel
164
+ dataset_prepared_path:
165
+ val_set_size: 0.01
166
+ output_dir: ./out
167
+ adapter: qlora
168
+ lora_model_dir:
169
+ sequence_len: 1800
170
+ sample_packing: false
171
+ pad_to_sequence_len: false
172
+ lora_r: 16
173
+ lora_alpha: 16
174
+ lora_dropout: 0.05
175
+ lora_target_linear: true
176
+ lora_fan_in_fan_out:
177
+ lora_target_modules:
178
+ - layers.1.self_attn.q_proj
179
+ - layers.0.self_attn.q_proj
180
+ - layers.15.self_attn.q_proj
181
+ - layers.12.self_attn.q_proj
182
+ - layers.11.self_attn.q_proj
183
+ - layers.14.self_attn.q_proj
184
+ - layers.9.self_attn.q_proj
185
+ - layers.16.self_attn.q_proj
186
+ - layers.30.self_attn.q_proj
187
+ - layers.18.self_attn.q_proj
188
+ - layers.13.self_attn.q_proj
189
+ - layers.10.self_attn.q_proj
190
+ - layers.7.self_attn.q_proj
191
+ - layers.8.self_attn.q_proj
192
+ - layers.4.self_attn.q_proj
193
+ - layers.19.self_attn.q_proj
194
+ - layers.27.self_attn.k_proj
195
+ - layers.24.self_attn.k_proj
196
+ - layers.25.self_attn.k_proj
197
+ - layers.22.self_attn.k_proj
198
+ - layers.26.self_attn.k_proj
199
+ - layers.29.self_attn.k_proj
200
+ - layers.23.self_attn.k_proj
201
+ - layers.28.self_attn.k_proj
202
+ - layers.21.self_attn.k_proj
203
+ - layers.31.self_attn.k_proj
204
+ - layers.30.self_attn.k_proj
205
+ - layers.20.self_attn.k_proj
206
+ - layers.5.self_attn.k_proj
207
+ - layers.19.self_attn.k_proj
208
+ - layers.17.self_attn.k_proj
209
+ - layers.18.self_attn.k_proj
210
+ - layers.19.self_attn.v_proj
211
+ - layers.24.self_attn.v_proj
212
+ - layers.18.self_attn.v_proj
213
+ - layers.5.self_attn.v_proj
214
+ - layers.3.self_attn.v_proj
215
+ - layers.16.self_attn.v_proj
216
+ - layers.23.self_attn.v_proj
217
+ - layers.27.self_attn.v_proj
218
+ - layers.25.self_attn.v_proj
219
+ - layers.26.self_attn.v_proj
220
+ - layers.20.self_attn.v_proj
221
+ - layers.6.self_attn.v_proj
222
+ - layers.15.self_attn.v_proj
223
+ - layers.17.self_attn.v_proj
224
+ - layers.29.self_attn.v_proj
225
+ - layers.22.self_attn.v_proj
226
+ - layers.12.self_attn.o_proj
227
+ - layers.9.self_attn.o_proj
228
+ - layers.14.self_attn.o_proj
229
+ - layers.0.self_attn.o_proj
230
+ - layers.6.self_attn.o_proj
231
+ - layers.8.self_attn.o_proj
232
+ - layers.10.self_attn.o_proj
233
+ - layers.11.self_attn.o_proj
234
+ - layers.13.self_attn.o_proj
235
+ - layers.24.self_attn.o_proj
236
+ - layers.7.self_attn.o_proj
237
+ - layers.15.self_attn.o_proj
238
+ - layers.5.self_attn.o_proj
239
+ - layers.17.self_attn.o_proj
240
+ - layers.25.self_attn.o_proj
241
+ - layers.4.self_attn.o_proj
242
+ - layers.31.mlp.gate_proj
243
+ - layers.30.mlp.gate_proj
244
+ - layers.4.mlp.gate_proj
245
+ - layers.3.mlp.gate_proj
246
+ - layers.29.mlp.gate_proj
247
+ - layers.28.mlp.gate_proj
248
+ - layers.6.mlp.gate_proj
249
+ - layers.27.mlp.gate_proj
250
+ - layers.5.mlp.gate_proj
251
+ - layers.26.mlp.gate_proj
252
+ - layers.25.mlp.gate_proj
253
+ - layers.7.mlp.gate_proj
254
+ - layers.2.mlp.gate_proj
255
+ - layers.24.mlp.gate_proj
256
+ - layers.23.mlp.gate_proj
257
+ - layers.10.mlp.gate_proj
258
+ - layers.6.mlp.up_proj
259
+ - layers.4.mlp.up_proj
260
+ - layers.5.mlp.up_proj
261
+ - layers.27.mlp.up_proj
262
+ - layers.25.mlp.up_proj
263
+ - layers.26.mlp.up_proj
264
+ - layers.17.mlp.up_proj
265
+ - layers.24.mlp.up_proj
266
+ - layers.7.mlp.up_proj
267
+ - layers.10.mlp.up_proj
268
+ - layers.3.mlp.up_proj
269
+ - layers.11.mlp.up_proj
270
+ - layers.23.mlp.up_proj
271
+ - layers.9.mlp.up_proj
272
+ - layers.14.mlp.up_proj
273
+ - layers.18.mlp.up_proj
274
+ - layers.19.mlp.down_proj
275
+ - layers.20.mlp.down_proj
276
+ - layers.18.mlp.down_proj
277
+ - layers.21.mlp.down_proj
278
+ - layers.29.mlp.down_proj
279
+ - layers.1.mlp.down_proj
280
+ - layers.22.mlp.down_proj
281
+ - layers.28.mlp.down_proj
282
+ - layers.23.mlp.down_proj
283
+ - layers.30.mlp.down_proj
284
+ - layers.17.mlp.down_proj
285
+ - layers.4.mlp.down_proj
286
+ - layers.2.mlp.down_proj
287
+ - layers.15.mlp.down_proj
288
+ - layers.5.mlp.down_proj
289
+ wandb_project: axolotl
290
+ wandb_entity:
291
+ wandb_watch:
292
+ wandb_name:
293
+ wandb_log_model:
294
+ gradient_accumulation_steps: 8
295
+ micro_batch_size: 1
296
+ num_epochs: 1
297
+ optimizer: paged_adamw_32bit
298
+ lr_scheduler: cosine
299
+ learning_rate: 5e-7
300
+ train_on_inputs: false
301
+ group_by_length: false
302
+ bf16: true
303
+ fp16: false
304
+ tf32: true
305
+ gradient_checkpointing: true
306
+ early_stopping_patience:
307
+ resume_from_checkpoint:
308
+ local_rank:
309
+ logging_steps: 1
310
+ xformers_attention:
311
+ flash_attention: true
312
+ warmup_steps: 100
313
+ evals_per_epoch: 1
314
+ eval_table_size:
315
+ eval_table_max_new_tokens: 128
316
+ save_steps: 1080
317
+ max_steps: 1080
318
+ debug:
319
+ deepspeed:
320
+ weight_decay: 0.0
321
+ fsdp:
322
+ fsdp_config:
323
+ special_tokens:
324
+ ```
325
+
326
+
327
+ ### Framework versions
328
+
329
+ - Transformers 4.38.0.dev0
330
+ - Pytorch 2.1.2+cu118
331
+ - Datasets 2.17.0
332
+ - Tokenizers 0.15.0
333
+ - axolotl: 0.4.0
334
+
335
+ [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)