QuentinKemperino commited on
Commit
759fe62
1 Parent(s): aa572ce

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +82 -0
README.md ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-sa-4.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - lex_glue
7
+ model-index:
8
+ - name: ECHR_test_Merged
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # ECHR_test_Merged
16
+
17
+ This model is a fine-tuned version of [nlpaueb/legal-bert-base-uncased](https://huggingface.co/nlpaueb/legal-bert-base-uncased) on the lex_glue dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.2162
20
+ - Macro-f1: 0.5607
21
+ - Micro-f1: 0.6726
22
+
23
+ ## Model description
24
+
25
+ More information needed
26
+
27
+ ## Intended uses & limitations
28
+
29
+ More information needed
30
+
31
+ ## Training and evaluation data
32
+
33
+ More information needed
34
+
35
+ ## Training procedure
36
+
37
+ ### Training hyperparameters
38
+
39
+ The following hyperparameters were used during training:
40
+ - learning_rate: 3e-05
41
+ - train_batch_size: 8
42
+ - eval_batch_size: 8
43
+ - seed: 42
44
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
45
+ - lr_scheduler_type: linear
46
+ - num_epochs: 10
47
+ - mixed_precision_training: Native AMP
48
+
49
+ ### Training results
50
+
51
+ | Training Loss | Epoch | Step | Validation Loss | Macro-f1 | Micro-f1 |
52
+ |:-------------:|:-----:|:-----:|:---------------:|:--------:|:--------:|
53
+ | 0.2278 | 0.44 | 500 | 0.3196 | 0.2394 | 0.4569 |
54
+ | 0.1891 | 0.89 | 1000 | 0.2827 | 0.3255 | 0.5112 |
55
+ | 0.1803 | 1.33 | 1500 | 0.2603 | 0.3961 | 0.5698 |
56
+ | 0.1676 | 1.78 | 2000 | 0.2590 | 0.4251 | 0.6003 |
57
+ | 0.1635 | 2.22 | 2500 | 0.2489 | 0.4186 | 0.6030 |
58
+ | 0.1784 | 2.67 | 3000 | 0.2445 | 0.4627 | 0.6159 |
59
+ | 0.1556 | 3.11 | 3500 | 0.2398 | 0.4757 | 0.6170 |
60
+ | 0.151 | 3.56 | 4000 | 0.2489 | 0.4725 | 0.6163 |
61
+ | 0.1564 | 4.0 | 4500 | 0.2289 | 0.5019 | 0.6416 |
62
+ | 0.1544 | 4.44 | 5000 | 0.2406 | 0.5013 | 0.6408 |
63
+ | 0.1516 | 4.89 | 5500 | 0.2351 | 0.5145 | 0.6510 |
64
+ | 0.1487 | 5.33 | 6000 | 0.2354 | 0.5164 | 0.6394 |
65
+ | 0.1385 | 5.78 | 6500 | 0.2385 | 0.5205 | 0.6486 |
66
+ | 0.145 | 6.22 | 7000 | 0.2337 | 0.5197 | 0.6529 |
67
+ | 0.1332 | 6.67 | 7500 | 0.2294 | 0.5421 | 0.6526 |
68
+ | 0.1293 | 7.11 | 8000 | 0.2167 | 0.5576 | 0.6652 |
69
+ | 0.1475 | 7.56 | 8500 | 0.2218 | 0.5676 | 0.6649 |
70
+ | 0.1376 | 8.0 | 9000 | 0.2203 | 0.5565 | 0.6709 |
71
+ | 0.1408 | 8.44 | 9500 | 0.2178 | 0.5541 | 0.6716 |
72
+ | 0.133 | 8.89 | 10000 | 0.2212 | 0.5692 | 0.6640 |
73
+ | 0.1363 | 9.33 | 10500 | 0.2148 | 0.5642 | 0.6736 |
74
+ | 0.1344 | 9.78 | 11000 | 0.2162 | 0.5607 | 0.6726 |
75
+
76
+
77
+ ### Framework versions
78
+
79
+ - Transformers 4.19.4
80
+ - Pytorch 1.11.0+cu113
81
+ - Datasets 2.2.2
82
+ - Tokenizers 0.12.1