zhilinw6's picture
Update README.md
75c6330 verified
|
raw
history blame
32.1 kB
metadata
model-index:
  - name: Quark-Emb-8B
    results:
      - dataset:
          config: default
          name: MTEB AFQMC (default)
          revision: latest2023
          split: validation
          type: C-MTEB/AFQMC
        metrics:
          - type: cosine_pearson
            value: 52.87704664791064
          - type: cosine_spearman
            value: 53.567003436521375
          - type: manhattan_pearson
            value: 52.07472780799189
          - type: manhattan_spearman
            value: 53.5368469974003
          - type: euclidean_pearson
            value: 52.074186684368016
          - type: euclidean_spearman
            value: 53.515536447088074
          - type: main_score
            value: 53.567003436521375
        task:
          type: STS
      - dataset:
          config: default
          name: MTEB ATEC (default)
          revision: latest2023
          split: test
          type: C-MTEB/ATEC
        metrics:
          - type: cosine_pearson
            value: 59.13301114775821
          - type: cosine_spearman
            value: 53.42152760117668
          - type: manhattan_pearson
            value: 60.05185745744783
          - type: manhattan_spearman
            value: 53.36914545708813
          - type: euclidean_pearson
            value: 60.17725014927802
          - type: euclidean_spearman
            value: 53.431110991334485
          - type: main_score
            value: 53.42152760117668
        task:
          type: STS
      - dataset:
          config: zh
          name: MTEB AmazonReviewsClassification (zh)
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
          split: test
          type: mteb/amazon_reviews_multi
        metrics:
          - type: accuracy
            value: 54.74600000000001
          - type: accuracy_stderr
            value: 1.060492338491892
          - type: f1
            value: 53.49846112279175
          - type: f1_stderr
            value: 1.729174511160517
          - type: main_score
            value: 54.74600000000001
        task:
          type: Classification
      - dataset:
          config: zh
          name: MTEB AmazonReviewsClassification (zh)
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
          split: validation
          type: mteb/amazon_reviews_multi
        metrics:
          - type: accuracy
            value: 53.468
          - type: accuracy_stderr
            value: 1.0129639677698308
          - type: f1
            value: 52.21987651679265
          - type: f1_stderr
            value: 1.7016822177116173
          - type: main_score
            value: 53.468
        task:
          type: Classification
      - dataset:
          config: default
          name: MTEB BQ (default)
          revision: latest2023
          split: test
          type: C-MTEB/BQ
        metrics:
          - type: cosine_pearson
            value: 69.640366232364
          - type: cosine_spearman
            value: 70.65881213017273
          - type: manhattan_pearson
            value: 67.76837799100343
          - type: manhattan_spearman
            value: 70.5046111101055
          - type: euclidean_pearson
            value: 67.83004194158737
          - type: euclidean_spearman
            value: 70.60927547682859
          - type: main_score
            value: 70.65881213017273
        task:
          type: STS
      - dataset:
          config: default
          name: MTEB CLSClusteringP2P (default)
          revision: latest2023
          split: test
          type: C-MTEB/CLSClusteringP2P
        metrics:
          - type: v_measure
            value: 62.32714079793593
          - type: v_measure_std
            value: 1.5782386182731478
          - type: main_score
            value: 62.32714079793593
        task:
          type: Clustering
      - dataset:
          config: default
          name: MTEB CLSClusteringS2S (default)
          revision: latest2023
          split: test
          type: C-MTEB/CLSClusteringS2S
        metrics:
          - type: v_measure
            value: 59.29532340833129
          - type: v_measure_std
            value: 1.5258658358346424
          - type: main_score
            value: 59.29532340833129
        task:
          type: Clustering
      - dataset:
          config: default
          name: MTEB CMedQAv1
          revision: latest2023
          split: test
          type: C-MTEB/CMedQAv1-reranking
        metrics:
          - type: map
            value: 88.02263756085355
          - type: mrr
            value: 90.18928571428572
          - type: main_score
            value: 88.02263756085355
        task:
          type: Reranking
      - dataset:
          config: default
          name: MTEB CMedQAv2
          revision: latest2023
          split: test
          type: C-MTEB/CMedQAv2-reranking
        metrics:
          - type: map
            value: 88.81199829110464
          - type: mrr
            value: 90.81817460317461
          - type: main_score
            value: 88.81199829110464
        task:
          type: Reranking
      - dataset:
          config: default
          name: MTEB CmedqaRetrieval (default)
          revision: latest2023
          split: dev
          type: C-MTEB/CmedqaRetrieval
        metrics:
          - type: map_at_1
            value: 27.448
          - type: map_at_10
            value: 40.794000000000004
          - type: map_at_100
            value: 42.606
          - type: map_at_1000
            value: 42.711
          - type: map_at_20
            value: 41.778
          - type: map_at_3
            value: 36.429
          - type: map_at_5
            value: 38.841
          - type: mrr_at_1
            value: 41.510000000000005
          - type: mrr_at_10
            value: 49.986999999999995
          - type: mrr_at_100
            value: 50.908
          - type: mrr_at_1000
            value: 50.946000000000005
          - type: mrr_at_20
            value: 50.531000000000006
          - type: mrr_at_3
            value: 47.562
          - type: mrr_at_5
            value: 48.882
          - type: ndcg_at_1
            value: 41.510000000000005
          - type: ndcg_at_10
            value: 47.620000000000005
          - type: ndcg_at_100
            value: 54.586999999999996
          - type: ndcg_at_1000
            value: 56.324
          - type: ndcg_at_20
            value: 50.332
          - type: ndcg_at_3
            value: 42.27
          - type: ndcg_at_5
            value: 44.421
          - type: precision_at_1
            value: 41.510000000000005
          - type: precision_at_10
            value: 10.45
          - type: precision_at_100
            value: 1.6179999999999999
          - type: precision_at_1000
            value: 0.184
          - type: precision_at_20
            value: 6.1339999999999995
          - type: precision_at_3
            value: 23.823
          - type: precision_at_5
            value: 17.089
          - type: recall_at_1
            value: 27.448
          - type: recall_at_10
            value: 58.629
          - type: recall_at_100
            value: 87.26899999999999
          - type: recall_at_1000
            value: 98.713
          - type: recall_at_20
            value: 67.929
          - type: recall_at_3
            value: 42.331
          - type: recall_at_5
            value: 49.193999999999996
          - type: main_score
            value: 47.620000000000005
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB Cmnli (default)
          revision: latest2023
          split: validation
          type: C-MTEB/CMNLI
        metrics:
          - type: cos_sim_accuracy
            value: 91.040288634997
          - type: cos_sim_accuracy_threshold
            value: 96.31753556207411
          - type: cos_sim_ap
            value: 95.94857244353375
          - type: cos_sim_f1
            value: 91.47971901200997
          - type: cos_sim_f1_threshold
            value: 96.01236110428391
          - type: cos_sim_precision
            value: 88.74477907232358
          - type: cos_sim_recall
            value: 94.388590133271
          - type: dot_accuracy
            value: 80.7696933253157
          - type: dot_accuracy_threshold
            value: 58.4022485296251
          - type: dot_ap
            value: 89.17817373664943
          - type: dot_f1
            value: 81.62572172534811
          - type: dot_f1_threshold
            value: 58.18378730482039
          - type: dot_precision
            value: 79.12642669007901
          - type: dot_recall
            value: 84.28805237315876
          - type: euclidean_accuracy
            value: 90.92002405291642
          - type: euclidean_accuracy_threshold
            value: 21.553298629922512
          - type: euclidean_ap
            value: 95.90941014786691
          - type: euclidean_f1
            value: 91.45241317095173
          - type: euclidean_f1_threshold
            value: 22.109074422645463
          - type: euclidean_precision
            value: 88.32498366368982
          - type: euclidean_recall
            value: 94.80944587327565
          - type: manhattan_accuracy
            value: 90.94407696933253
          - type: manhattan_accuracy_threshold
            value: 524.1466620016906
          - type: manhattan_ap
            value: 95.89310684813798
          - type: manhattan_f1
            value: 91.50400541577343
          - type: manhattan_f1_threshold
            value: 525.5181014869215
          - type: manhattan_precision
            value: 88.4212821631051
          - type: manhattan_recall
            value: 94.80944587327565
          - type: max_accuracy
            value: 91.040288634997
          - type: max_ap
            value: 95.94857244353375
          - type: max_f1
            value: 91.50400541577343
        task:
          type: PairClassification
      - dataset:
          config: default
          name: MTEB CovidRetrieval (default)
          revision: latest2023
          split: dev
          type: C-MTEB/CovidRetrieval
        metrics:
          - type: map_at_1
            value: 78.82000000000001
          - type: map_at_10
            value: 85.51100000000001
          - type: map_at_100
            value: 85.67099999999999
          - type: map_at_1000
            value: 85.672
          - type: map_at_20
            value: 85.641
          - type: map_at_3
            value: 84.321
          - type: map_at_5
            value: 85.048
          - type: mrr_at_1
            value: 78.925
          - type: mrr_at_10
            value: 85.548
          - type: mrr_at_100
            value: 85.698
          - type: mrr_at_1000
            value: 85.699
          - type: mrr_at_20
            value: 85.669
          - type: mrr_at_3
            value: 84.45700000000001
          - type: mrr_at_5
            value: 85.12100000000001
          - type: ndcg_at_1
            value: 78.925
          - type: ndcg_at_10
            value: 88.359
          - type: ndcg_at_100
            value: 88.98899999999999
          - type: ndcg_at_1000
            value: 89.017
          - type: ndcg_at_20
            value: 88.776
          - type: ndcg_at_3
            value: 86.086
          - type: ndcg_at_5
            value: 87.336
          - type: precision_at_1
            value: 78.925
          - type: precision_at_10
            value: 9.789
          - type: precision_at_100
            value: 1.0070000000000001
          - type: precision_at_1000
            value: 0.101
          - type: precision_at_20
            value: 4.979
          - type: precision_at_3
            value: 30.488
          - type: precision_at_5
            value: 18.925
          - type: recall_at_1
            value: 78.82000000000001
          - type: recall_at_10
            value: 96.997
          - type: recall_at_100
            value: 99.684
          - type: recall_at_1000
            value: 99.895
          - type: recall_at_20
            value: 98.52499999999999
          - type: recall_at_3
            value: 91.01700000000001
          - type: recall_at_5
            value: 93.994
          - type: main_score
            value: 88.359
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB DuRetrieval (default)
          revision: latest2023
          split: dev
          type: C-MTEB/DuRetrieval
        metrics:
          - type: map_at_1
            value: 28.03
          - type: map_at_10
            value: 85.60600000000001
          - type: map_at_100
            value: 88.14800000000001
          - type: map_at_1000
            value: 88.169
          - type: map_at_20
            value: 87.591
          - type: map_at_3
            value: 60.06
          - type: map_at_5
            value: 75.564
          - type: mrr_at_1
            value: 94.05
          - type: mrr_at_10
            value: 96.043
          - type: mrr_at_100
            value: 96.075
          - type: mrr_at_1000
            value: 96.077
          - type: mrr_at_20
            value: 96.06099999999999
          - type: mrr_at_3
            value: 95.875
          - type: mrr_at_5
            value: 96.017
          - type: ndcg_at_1
            value: 94.05
          - type: ndcg_at_10
            value: 91.58800000000001
          - type: ndcg_at_100
            value: 93.536
          - type: ndcg_at_1000
            value: 93.726
          - type: ndcg_at_20
            value: 92.64099999999999
          - type: ndcg_at_3
            value: 90.865
          - type: ndcg_at_5
            value: 89.972
          - type: precision_at_1
            value: 94.05
          - type: precision_at_10
            value: 43.19
          - type: precision_at_100
            value: 4.859
          - type: precision_at_1000
            value: 0.49
          - type: precision_at_20
            value: 23.3
          - type: precision_at_3
            value: 81
          - type: precision_at_5
            value: 68.36
          - type: recall_at_1
            value: 28.03
          - type: recall_at_10
            value: 92.095
          - type: recall_at_100
            value: 98.764
          - type: recall_at_1000
            value: 99.71
          - type: recall_at_20
            value: 95.87
          - type: recall_at_3
            value: 61.949
          - type: recall_at_5
            value: 79.41
          - type: main_score
            value: 91.58800000000001
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB EcomRetrieval (default)
          revision: latest2023
          split: dev
          type: C-MTEB/EcomRetrieval
        metrics:
          - type: map_at_1
            value: 58.599999999999994
          - type: map_at_10
            value: 68.88499999999999
          - type: map_at_100
            value: 69.269
          - type: map_at_1000
            value: 69.274
          - type: map_at_20
            value: 69.17699999999999
          - type: map_at_3
            value: 66.167
          - type: map_at_5
            value: 68.082
          - type: mrr_at_1
            value: 58.599999999999994
          - type: mrr_at_10
            value: 68.88499999999999
          - type: mrr_at_100
            value: 69.269
          - type: mrr_at_1000
            value: 69.274
          - type: mrr_at_20
            value: 69.17699999999999
          - type: mrr_at_3
            value: 66.167
          - type: mrr_at_5
            value: 68.082
          - type: ndcg_at_1
            value: 58.599999999999994
          - type: ndcg_at_10
            value: 74.018
          - type: ndcg_at_100
            value: 75.72
          - type: ndcg_at_1000
            value: 75.851
          - type: ndcg_at_20
            value: 75.08
          - type: ndcg_at_3
            value: 68.64
          - type: ndcg_at_5
            value: 72.075
          - type: precision_at_1
            value: 58.599999999999994
          - type: precision_at_10
            value: 9.01
          - type: precision_at_100
            value: 0.9769999999999999
          - type: precision_at_1000
            value: 0.099
          - type: precision_at_20
            value: 4.715
          - type: precision_at_3
            value: 25.267
          - type: precision_at_5
            value: 16.82
          - type: recall_at_1
            value: 58.599999999999994
          - type: recall_at_10
            value: 90.10000000000001
          - type: recall_at_100
            value: 97.7
          - type: recall_at_1000
            value: 98.7
          - type: recall_at_20
            value: 94.3
          - type: recall_at_3
            value: 75.8
          - type: recall_at_5
            value: 84.1
          - type: main_score
            value: 74.018
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB IFlyTek (default)
          revision: latest2023
          split: validation
          type: C-MTEB/IFlyTek-classification
        metrics:
          - type: accuracy
            value: 55.79838399384378
          - type: accuracy_stderr
            value: 0.273588131352537
          - type: f1
            value: 42.23811666656058
          - type: f1_stderr
            value: 0.2317340030986553
          - type: main_score
            value: 55.79838399384378
        task:
          type: Classification
      - dataset:
          config: default
          name: MTEB JDReview (default)
          revision: latest2023
          split: test
          type: C-MTEB/JDReview-classification
        metrics:
          - type: accuracy
            value: 89.11819887429644
          - type: accuracy_stderr
            value: 1.5149440328845287
          - type: ap
            value: 60.17445086411222
          - type: ap_stderr
            value: 3.4864563160430384
          - type: f1
            value: 84.14324891240739
          - type: f1_stderr
            value: 1.804154595730216
          - type: main_score
            value: 89.11819887429644
        task:
          type: Classification
      - dataset:
          config: default
          name: MTEB LCQMC (default)
          revision: latest2023
          split: test
          type: C-MTEB/LCQMC
        metrics:
          - type: cosine_pearson
            value: 80.86541640109346
          - type: cosine_spearman
            value: 79.60409318173409
          - type: manhattan_pearson
            value: 81.12725142112909
          - type: manhattan_spearman
            value: 79.61120096401483
          - type: euclidean_pearson
            value: 81.1558178459699
          - type: euclidean_spearman
            value: 79.63206760369867
          - type: main_score
            value: 79.60409318173409
        task:
          type: STS
      - dataset:
          config: default
          name: MTEB MMarcoReranking (default)
          revision: latest2023
          split: dev
          type: C-MTEB/Mmarco-reranking
        metrics:
          - type: map
            value: 30.290346963620866
          - type: mrr
            value: 29.661507936507935
          - type: main_score
            value: 30.290346963620866
        task:
          type: Reranking
      - dataset:
          config: default
          name: MTEB MMarcoRetrieval (default)
          revision: latest2023
          split: dev
          type: C-MTEB/MMarcoRetrieval
        metrics:
          - type: map_at_1
            value: 67.801
          - type: map_at_10
            value: 76.771
          - type: map_at_100
            value: 77.08
          - type: map_at_1000
            value: 77.091
          - type: map_at_20
            value: 76.982
          - type: map_at_3
            value: 75.035
          - type: map_at_5
            value: 76.171
          - type: mrr_at_1
            value: 70.057
          - type: mrr_at_10
            value: 77.387
          - type: mrr_at_100
            value: 77.65100000000001
          - type: mrr_at_1000
            value: 77.661
          - type: mrr_at_20
            value: 77.566
          - type: mrr_at_3
            value: 75.90299999999999
          - type: mrr_at_5
            value: 76.848
          - type: ndcg_at_1
            value: 70.057
          - type: ndcg_at_10
            value: 80.37100000000001
          - type: ndcg_at_100
            value: 81.71300000000001
          - type: ndcg_at_1000
            value: 81.982
          - type: ndcg_at_20
            value: 81.074
          - type: ndcg_at_3
            value: 77.12
          - type: ndcg_at_5
            value: 79.00500000000001
          - type: precision_at_1
            value: 70.057
          - type: precision_at_10
            value: 9.643
          - type: precision_at_100
            value: 1.031
          - type: precision_at_1000
            value: 0.105
          - type: precision_at_20
            value: 4.973000000000001
          - type: precision_at_3
            value: 28.959000000000003
          - type: precision_at_5
            value: 18.384
          - type: recall_at_1
            value: 67.801
          - type: recall_at_10
            value: 90.821
          - type: recall_at_100
            value: 96.809
          - type: recall_at_1000
            value: 98.87899999999999
          - type: recall_at_20
            value: 93.49300000000001
          - type: recall_at_3
            value: 82.26
          - type: recall_at_5
            value: 86.725
          - type: main_score
            value: 80.37100000000001
        task:
          type: Retrieval
      - dataset:
          config: zh-CN
          name: MTEB MassiveIntentClassification (zh-CN)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 81.4862138533961
          - type: accuracy_stderr
            value: 1.024666951162929
          - type: f1
            value: 78.57865898474617
          - type: f1_stderr
            value: 1.1662766217911715
          - type: main_score
            value: 81.4862138533961
        task:
          type: Classification
      - dataset:
          config: zh-CN
          name: MTEB MassiveScenarioClassification (zh-CN)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 86.43913920645595
          - type: accuracy_stderr
            value: 0.6198364524624383
          - type: f1
            value: 85.45514450914429
          - type: f1_stderr
            value: 0.775295463718716
          - type: main_score
            value: 86.43913920645595
        task:
          type: Classification
      - dataset:
          config: default
          name: MTEB MedicalRetrieval (default)
          revision: latest2023
          split: dev
          type: C-MTEB/MedicalRetrieval
        metrics:
          - type: map_at_1
            value: 60
          - type: map_at_10
            value: 66.673
          - type: map_at_100
            value: 67.239
          - type: map_at_1000
            value: 67.26299999999999
          - type: map_at_20
            value: 67.01899999999999
          - type: map_at_3
            value: 65.333
          - type: map_at_5
            value: 66.063
          - type: mrr_at_1
            value: 60.099999999999994
          - type: mrr_at_10
            value: 66.739
          - type: mrr_at_100
            value: 67.306
          - type: mrr_at_1000
            value: 67.33
          - type: mrr_at_20
            value: 67.086
          - type: mrr_at_3
            value: 65.4
          - type: mrr_at_5
            value: 66.13
          - type: ndcg_at_1
            value: 60
          - type: ndcg_at_10
            value: 69.786
          - type: ndcg_at_100
            value: 72.693
          - type: ndcg_at_1000
            value: 73.373
          - type: ndcg_at_20
            value: 71.032
          - type: ndcg_at_3
            value: 67.024
          - type: ndcg_at_5
            value: 68.34
          - type: precision_at_1
            value: 60
          - type: precision_at_10
            value: 7.95
          - type: precision_at_100
            value: 0.935
          - type: precision_at_1000
            value: 0.099
          - type: precision_at_20
            value: 4.22
          - type: precision_at_3
            value: 23.967
          - type: precision_at_5
            value: 15.02
          - type: recall_at_1
            value: 60
          - type: recall_at_10
            value: 79.5
          - type: recall_at_100
            value: 93.5
          - type: recall_at_1000
            value: 98.9
          - type: recall_at_20
            value: 84.39999999999999
          - type: recall_at_3
            value: 71.89999999999999
          - type: recall_at_5
            value: 75.1
          - type: main_score
            value: 69.786
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB MultilingualSentiment (default)
          revision: latest2023
          split: validation
          type: C-MTEB/MultilingualSentiment-classification
        metrics:
          - type: accuracy
            value: 81.19666666666667
          - type: accuracy_stderr
            value: 0.6507175526550155
          - type: f1
            value: 81.3717120301294
          - type: f1_stderr
            value: 0.629161893845245
          - type: main_score
            value: 81.19666666666667
        task:
          type: Classification
      - dataset:
          config: default
          name: MTEB Ocnli (default)
          revision: latest2023
          split: validation
          type: C-MTEB/OCNLI
        metrics:
          - type: cos_sim_accuracy
            value: 89.92961559285327
          - type: cos_sim_accuracy_threshold
            value: 95.72410743295985
          - type: cos_sim_ap
            value: 94.04072585697942
          - type: cos_sim_f1
            value: 90.6060606060606
          - type: cos_sim_f1_threshold
            value: 95.71085030120679
          - type: cos_sim_precision
            value: 86.83446272991287
          - type: cos_sim_recall
            value: 94.72016895459345
          - type: dot_accuracy
            value: 84.29886302111532
          - type: dot_accuracy_threshold
            value: 58.39834018444028
          - type: dot_ap
            value: 90.71149047430606
          - type: dot_f1
            value: 84.83263598326361
          - type: dot_f1_threshold
            value: 58.39834018444028
          - type: dot_precision
            value: 84.04145077720207
          - type: dot_recall
            value: 85.6388595564942
          - type: euclidean_accuracy
            value: 89.87547374120194
          - type: euclidean_accuracy_threshold
            value: 22.827705768877962
          - type: euclidean_ap
            value: 93.87312138426815
          - type: euclidean_f1
            value: 90.5982905982906
          - type: euclidean_f1_threshold
            value: 22.940558234199905
          - type: euclidean_precision
            value: 86.468330134357
          - type: euclidean_recall
            value: 95.14255543822597
          - type: manhattan_accuracy
            value: 89.44233892799134
          - type: manhattan_accuracy_threshold
            value: 544.6256417358975
          - type: manhattan_ap
            value: 93.8313800715528
          - type: manhattan_f1
            value: 90.16641452344932
          - type: manhattan_f1_threshold
            value: 544.6256417358975
          - type: manhattan_precision
            value: 86.2934362934363
          - type: manhattan_recall
            value: 94.40337909186906
          - type: max_accuracy
            value: 89.92961559285327
          - type: max_ap
            value: 94.04072585697942
          - type: max_f1
            value: 90.6060606060606
        task:
          type: PairClassification
      - dataset:
          config: default
          name: MTEB OnlineShopping (default)
          revision: latest2023
          split: test
          type: C-MTEB/OnlineShopping-classification
        metrics:
          - type: accuracy
            value: 93.83999999999999
          - type: accuracy_stderr
            value: 0.4521061822182879
          - type: ap
            value: 92.19373645628713
          - type: ap_stderr
            value: 0.2927396159644918
          - type: f1
            value: 93.83158946571204
          - type: f1_stderr
            value: 0.4472553159438725
          - type: main_score
            value: 93.83999999999999
        task:
          type: Classification
      - dataset:
          config: default
          name: MTEB PAWSX (default)
          revision: latest2023
          split: test
          type: C-MTEB/PAWSX
        metrics:
          - type: cosine_pearson
            value: 50.30680596662101
          - type: cosine_spearman
            value: 52.41534063346883
          - type: manhattan_pearson
            value: 51.81137421589127
          - type: manhattan_spearman
            value: 52.40332176267904
          - type: euclidean_pearson
            value: 51.842454511431235
          - type: euclidean_spearman
            value: 52.4062829337432
          - type: main_score
            value: 52.41534063346883
        task:
          type: STS
      - dataset:
          config: default
          name: MTEB QBQTC (default)
          revision: latest2023
          split: test
          type: C-MTEB/QBQTC
        metrics:
          - type: cosine_pearson
            value: 58.31070289198933
          - type: cosine_spearman
            value: 57.966010447080684
          - type: manhattan_pearson
            value: 54.99874211888254
          - type: manhattan_spearman
            value: 57.796012247889195
          - type: euclidean_pearson
            value: 55.138798573277455
          - type: euclidean_spearman
            value: 57.95150876116391
          - type: main_score
            value: 57.966010447080684
        task:
          type: STS
      - dataset:
          config: zh
          name: MTEB STS22 (zh)
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
          split: test
          type: mteb/sts22-crosslingual-sts
        metrics:
          - type: cosine_pearson
            value: 75.26028549682404
          - type: cosine_spearman
            value: 73.9002967678025
          - type: manhattan_pearson
            value: 73.47220514464013
          - type: manhattan_spearman
            value: 73.74093326288234
          - type: euclidean_pearson
            value: 73.59040445366989
          - type: euclidean_spearman
            value: 73.9002967678025
          - type: main_score
            value: 73.9002967678025
        task:
          type: STS
      - dataset:
          config: default
          name: MTEB STSB (default)
          revision: latest2023
          split: test
          type: C-MTEB/STSB
        metrics:
          - type: cosine_pearson
            value: 78.17081373176123
          - type: cosine_spearman
            value: 78.61566426272397
          - type: manhattan_pearson
            value: 77.66643088697434
          - type: manhattan_spearman
            value: 78.94692354474782
          - type: euclidean_pearson
            value: 77.69471041307843
          - type: euclidean_spearman
            value: 78.92513847741967
          - type: main_score
            value: 78.61566426272397
        task:
          type: STS
      - dataset:
          config: default
          name: MTEB T2Reranking (default)
          revision: latest2023
          split: dev
          type: C-MTEB/T2Reranking
        metrics:
          - type: map
            value: 68.13018101639273
          - type: mrr
            value: 79.13973922902494
          - type: main_score
            value: 68.13018101639273
        task:
          type: Reranking
      - dataset:
          config: default
          name: MTEB T2Retrieval (default)
          revision: latest2023
          split: dev
          type: C-MTEB/T2Retrieval
        metrics:
          - type: map_at_1
            value: 28.591
          - type: map_at_10
            value: 80.979
          - type: map_at_100
            value: 84.411
          - type: map_at_1000
            value: 84.458
          - type: map_at_20
            value: 83.68100000000001
          - type: map_at_3
            value: 56.967999999999996
          - type: map_at_5
            value: 70.098
          - type: mrr_at_1
            value: 92.12700000000001
          - type: mrr_at_10
            value: 94.094
          - type: mrr_at_100
            value: 94.161
          - type: mrr_at_1000
            value: 94.164
          - type: mrr_at_20
            value: 94.14
          - type: mrr_at_3
            value: 93.753
          - type: mrr_at_5
            value: 93.98100000000001
          - type: ndcg_at_1
            value: 92.12700000000001
          - type: ndcg_at_10
            value: 87.586
          - type: ndcg_at_100
            value: 90.58500000000001
          - type: ndcg_at_1000
            value: 91.05
          - type: ndcg_at_20
            value: 89.132
          - type: ndcg_at_3
            value: 88.86800000000001
          - type: ndcg_at_5
            value: 87.673
          - type: precision_at_1
            value: 92.12700000000001
          - type: precision_at_10
            value: 43.35
          - type: precision_at_100
            value: 5.06
          - type: precision_at_1000
            value: 0.517
          - type: precision_at_20
            value: 23.895
          - type: precision_at_3
            value: 77.664
          - type: precision_at_5
            value: 65.231
          - type: recall_at_1
            value: 28.591
          - type: recall_at_10
            value: 86.342
          - type: recall_at_100
            value: 96.274
          - type: recall_at_1000
            value: 98.666
          - type: recall_at_20
            value: 91.741
          - type: recall_at_3
            value: 58.386
          - type: recall_at_5
            value: 72.942
          - type: main_score
            value: 87.586
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB TNews (default)
          revision: latest2023
          split: validation
          type: C-MTEB/TNews-classification
        metrics:
          - type: accuracy
            value: 58.057
          - type: accuracy_stderr
            value: 0.4056365368159032
          - type: f1
            value: 56.16542257610506
          - type: f1_stderr
            value: 0.49560443919264746
          - type: main_score
            value: 58.057
        task:
          type: Classification
      - dataset:
          config: default
          name: MTEB ThuNewsClusteringP2P (default)
          revision: latest2023
          split: test
          type: C-MTEB/ThuNewsClusteringP2P
        metrics:
          - type: v_measure
            value: 83.43086890900754
          - type: v_measure_std
            value: 1.3242733220406704
          - type: main_score
            value: 83.43086890900754
        task:
          type: Clustering
      - dataset:
          config: default
          name: MTEB ThuNewsClusteringS2S (default)
          revision: latest2023
          split: test
          type: C-MTEB/ThuNewsClusteringS2S
        metrics:
          - type: v_measure
            value: 80.17922689954183
          - type: v_measure_std
            value: 2.1732975942130612
          - type: main_score
            value: 80.17922689954183
        task:
          type: Clustering
      - dataset:
          config: default
          name: MTEB VideoRetrieval (default)
          revision: latest2023
          split: dev
          type: C-MTEB/VideoRetrieval
        metrics:
          - type: map_at_1
            value: 68.60000000000001
          - type: map_at_10
            value: 77.518
          - type: map_at_100
            value: 77.815
          - type: map_at_1000
            value: 77.82
          - type: map_at_20
            value: 77.73299999999999
          - type: map_at_3
            value: 76.167
          - type: map_at_5
            value: 76.932
          - type: mrr_at_1
            value: 68.60000000000001
          - type: mrr_at_10
            value: 77.518
          - type: mrr_at_100
            value: 77.815
          - type: mrr_at_1000
            value: 77.82
          - type: mrr_at_20
            value: 77.73299999999999
          - type: mrr_at_3
            value: 76.167
          - type: mrr_at_5
            value: 76.932
          - type: ndcg_at_1
            value: 68.60000000000001
          - type: ndcg_at_10
            value: 81.339
          - type: ndcg_at_100
            value: 82.646
          - type: ndcg_at_1000
            value: 82.76599999999999
          - type: ndcg_at_20
            value: 82.107
          - type: ndcg_at_3
            value: 78.569
          - type: ndcg_at_5
            value: 79.937
          - type: precision_at_1
            value: 68.60000000000001
          - type: precision_at_10
            value: 9.31
          - type: precision_at_100
            value: 0.989
          - type: precision_at_1000
            value: 0.1
          - type: precision_at_20
            value: 4.805000000000001
          - type: precision_at_3
            value: 28.499999999999996
          - type: precision_at_5
            value: 17.76
          - type: recall_at_1
            value: 68.60000000000001
          - type: recall_at_10
            value: 93.10000000000001
          - type: recall_at_100
            value: 98.9
          - type: recall_at_1000
            value: 99.8
          - type: recall_at_20
            value: 96.1
          - type: recall_at_3
            value: 85.5
          - type: recall_at_5
            value: 88.8
          - type: main_score
            value: 81.339
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB Waimai (default)
          revision: latest2023
          split: test
          type: C-MTEB/waimai-classification
        metrics:
          - type: accuracy
            value: 90.63000000000001
          - type: accuracy_stderr
            value: 0.49203658400570216
          - type: ap
            value: 77.93466200571231
          - type: ap_stderr
            value: 1.2006502477223735
          - type: f1
            value: 89.36361097500829
          - type: f1_stderr
            value: 0.43660966359249054
          - type: main_score
            value: 90.63000000000001
        task:
          type: Classification
tags:
  - mteb

Quark-Emb-8B

  • Chinese Text Embedding Model developed by Alibaba Quark-LLM Team. Details will be published later.