aashish1904 commited on
Commit
b9b5b5f
1 Parent(s): 7ea9a21

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +112 -0
README.md ADDED
@@ -0,0 +1,112 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ ---
3
+
4
+ license: mit
5
+ language:
6
+ - en
7
+ base_model: microsoft/Phi-3-mini-4k-instruct
8
+
9
+ ---
10
+
11
+ [![QuantFactory Banner](https://lh7-rt.googleusercontent.com/docsz/AD_4nXeiuCm7c8lEwEJuRey9kiVZsRn2W-b4pWlu3-X534V3YmVuVc2ZL-NXg2RkzSOOS2JXGHutDuyyNAUtdJI65jGTo8jT9Y99tMi4H4MqL44Uc5QKG77B0d6-JfIkZHFaUA71-RtjyYZWVIhqsNZcx8-OMaA?key=xt3VSDoCbmTY7o-cwwOFwQ)](https://hf.co/QuantFactory)
12
+
13
+
14
+ # QuantFactory/NuExtract-GGUF
15
+ This is quantized version of [numind/NuExtract](https://huggingface.co/numind/NuExtract) created using llama.cpp
16
+
17
+ # Original Model Card
18
+
19
+ > ⚠️ **_NOTE:_** This model is out-dated. Find the updated version [here](https://huggingface.co/numind/NuExtract-v1.5)
20
+
21
+ # Structure Extraction Model by NuMind 🔥
22
+
23
+ NuExtract is a version of [phi-3-mini](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct), fine-tuned on a private high-quality synthetic dataset for information extraction.
24
+ To use the model, provide an input text (less than 2000 tokens) and a JSON template describing the information you need to extract.
25
+
26
+ Note: This model is purely extractive, so all text output by the model is present as is in the original text. You can also provide an example of output formatting to help the model understand your task more precisely.
27
+
28
+ Try it here: https://huggingface.co/spaces/numind/NuExtract
29
+
30
+ We also provide a tiny(0.5B) and large(7B) version of this model: [NuExtract-tiny](https://huggingface.co/numind/NuExtract-tiny) and [NuExtract-large](https://huggingface.co/numind/NuExtract-large)
31
+
32
+ **Checkout other models by NuMind:**
33
+ * SOTA Zero-shot NER Model [NuNER Zero](https://huggingface.co/numind/NuNER_Zero)
34
+ * SOTA Multilingual Entity Recognition Foundation Model: [link](https://huggingface.co/numind/entity-recognition-multilingual-general-sota-v1)
35
+ * SOTA Sentiment Analysis Foundation Model: [English](https://huggingface.co/numind/generic-sentiment-v1), [Multilingual](https://huggingface.co/numind/generic-sentiment-multi-v1)
36
+
37
+
38
+ ## Benchmark
39
+
40
+ Benchmark 0 shot (will release soon):
41
+
42
+ <p align="left">
43
+ <img src="result.png" width="600">
44
+ </p>
45
+
46
+ Benchmark fine-tunning (see blog post):
47
+
48
+ <p align="left">
49
+ <img src="result_ft.png" width="600">
50
+ </p>
51
+
52
+
53
+ ## Usage
54
+
55
+ To use the model:
56
+
57
+ ```python
58
+ import json
59
+ from transformers import AutoModelForCausalLM, AutoTokenizer
60
+
61
+
62
+ def predict_NuExtract(model, tokenizer, text, schema, example=["", "", ""]):
63
+ schema = json.dumps(json.loads(schema), indent=4)
64
+ input_llm = "<|input|>\n### Template:\n" + schema + "\n"
65
+ for i in example:
66
+ if i != "":
67
+ input_llm += "### Example:\n"+ json.dumps(json.loads(i), indent=4)+"\n"
68
+
69
+ input_llm += "### Text:\n"+text +"\n<|output|>\n"
70
+ input_ids = tokenizer(input_llm, return_tensors="pt",truncation = True, max_length=4000).to("cuda")
71
+
72
+ output = tokenizer.decode(model.generate(**input_ids)[0], skip_special_tokens=True)
73
+ return output.split("<|output|>")[1].split("<|end-output|>")[0]
74
+
75
+
76
+ # We recommend using bf16 as it results in negligable performance loss
77
+ model = AutoModelForCausalLM.from_pretrained("numind/NuExtract", torch_dtype=torch.bfloat16, trust_remote_code=True)
78
+ tokenizer = AutoTokenizer.from_pretrained("numind/NuExtract", trust_remote_code=True)
79
+
80
+ model.to("cuda")
81
+
82
+ model.eval()
83
+
84
+ text = """We introduce Mistral 7B, a 7–billion-parameter language model engineered for
85
+ superior performance and efficiency. Mistral 7B outperforms the best open 13B
86
+ model (Llama 2) across all evaluated benchmarks, and the best released 34B
87
+ model (Llama 1) in reasoning, mathematics, and code generation. Our model
88
+ leverages grouped-query attention (GQA) for faster inference, coupled with sliding
89
+ window attention (SWA) to effectively handle sequences of arbitrary length with a
90
+ reduced inference cost. We also provide a model fine-tuned to follow instructions,
91
+ Mistral 7B – Instruct, that surpasses Llama 2 13B – chat model both on human and
92
+ automated benchmarks. Our models are released under the Apache 2.0 license.
93
+ Code: https://github.com/mistralai/mistral-src
94
+ Webpage: https://mistral.ai/news/announcing-mistral-7b/"""
95
+
96
+ schema = """{
97
+ "Model": {
98
+ "Name": "",
99
+ "Number of parameters": "",
100
+ "Number of max token": "",
101
+ "Architecture": []
102
+ },
103
+ "Usage": {
104
+ "Use case": [],
105
+ "Licence": ""
106
+ }
107
+ }"""
108
+
109
+ prediction = predict_NuExtract(model, tokenizer, text, schema, example=["","",""])
110
+ print(prediction)
111
+
112
+ ```