aashish1904
commited on
Upload README.md with huggingface_hub
Browse files
README.md
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
---
|
3 |
+
|
4 |
+
library_name: transformers
|
5 |
+
tags: []
|
6 |
+
|
7 |
+
---
|
8 |
+
|
9 |
+
[![QuantFactory Banner](https://lh7-rt.googleusercontent.com/docsz/AD_4nXeiuCm7c8lEwEJuRey9kiVZsRn2W-b4pWlu3-X534V3YmVuVc2ZL-NXg2RkzSOOS2JXGHutDuyyNAUtdJI65jGTo8jT9Y99tMi4H4MqL44Uc5QKG77B0d6-JfIkZHFaUA71-RtjyYZWVIhqsNZcx8-OMaA?key=xt3VSDoCbmTY7o-cwwOFwQ)](https://hf.co/QuantFactory)
|
10 |
+
|
11 |
+
|
12 |
+
# QuantFactory/Llama3.1-8B-PRM-Deepseek-Data-GGUF
|
13 |
+
This is quantized version of [RLHFlow/Llama3.1-8B-PRM-Deepseek-Data](https://huggingface.co/RLHFlow/Llama3.1-8B-PRM-Deepseek-Data) created using llama.cpp
|
14 |
+
|
15 |
+
# Original Model Card
|
16 |
+
|
17 |
+
|
18 |
+
This is a process-supervised reward (PRM) trained on Mistral-generated data from the project [RLHFlow/RLHF-Reward-Modeling](https://github.com/RLHFlow/RLHF-Reward-Modeling)
|
19 |
+
|
20 |
+
The model is trained from [meta-llama/Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct) on [RLHFlow/Deepseek-PRM-Data](https://huggingface.co/datasets/RLHFlow/Deepseek-PRM-Data) for 1 epochs. We use a global batch size of 32 and a learning rate of 2e-6, where we pack the samples and split them into chunks of 8192 token. See more training details at https://github.com/RLHFlow/Online-RLHF/blob/main/math/llama-3.1-prm.yaml .
|
21 |
+
|
22 |
+
|
23 |
+
## BoN evaluation result for Mistral generator:
|
24 |
+
|
25 |
+
| Model | Method | GSM8K | MATH |
|
26 |
+
| ------------- | ------------- | ------------- | -------- |
|
27 |
+
| Mistral-7B | Pass@1 | 77.9 | 28.4 |
|
28 |
+
| Mistral-7B | Majority Voting@1024 | 84.2 | 36.8 |
|
29 |
+
| Mistral-7B | Mistral-ORM@1024 | 90.1 | 43.6 |
|
30 |
+
| Mistral-7B | Mistral-PRM@1024 | 92.4 | 46.3 |
|
31 |
+
|
32 |
+
## Scaling the inference sampling to N=1024 for Deepseek generator:
|
33 |
+
|
34 |
+
| Model | Method | GSM8K | MATH |
|
35 |
+
| ------------- | ------------- | ------------- | -------- |
|
36 |
+
| Deepseek-7B | Pass@1 | 83.9 | 38.4 |
|
37 |
+
| Deepseek-7B | Majority Voting@1024 | 89.7 | 57.4 |
|
38 |
+
| Deepseek-7B | Deepseek-ORM@1024 | 93.4 | 52.4 |
|
39 |
+
| Deepseek-7B | Deepseek-PRM@1024 | 93.0 | 58.1 |
|
40 |
+
| Deepseek-7B | Mistral-ORM@1024 (OOD) | 90.3 | 54.9 |
|
41 |
+
| Deepseek-7B | Mistral-PRM@1024 (OOD) | 91.9 | 56.9 |
|
42 |
+
|
43 |
+
## Visualization
|
44 |
+
|
45 |
+
|
46 |
+
![image/png](https://cdn-uploads.huggingface.co/production/uploads/643e59806db6ba8c5ee123f3/i622m76fvKv8drLmwl8Q3.png)
|
47 |
+
|
48 |
+
## Usage
|
49 |
+
|
50 |
+
See https://github.com/RLHFlow/RLHF-Reward-Modeling/tree/main/math-rm for detailed examples.
|
51 |
+
|
52 |
+
## Citation
|
53 |
+
|
54 |
+
The automatic annotation was proposed in the Math-shepherd paper:
|
55 |
+
|
56 |
+
```
|
57 |
+
@inproceedings{wang2024math,
|
58 |
+
title={Math-shepherd: Verify and reinforce llms step-by-step without human annotations},
|
59 |
+
author={Wang, Peiyi and Li, Lei and Shao, Zhihong and Xu, Runxin and Dai, Damai and Li, Yifei and Chen, Deli and Wu, Yu and Sui, Zhifang},
|
60 |
+
booktitle={Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)},
|
61 |
+
pages={9426--9439},
|
62 |
+
year={2024}
|
63 |
+
}
|
64 |
+
|
65 |
+
```
|
66 |
+
|
67 |
+
If you find the training recipe useful, please consider cite it as follows.
|
68 |
+
|
69 |
+
```
|
70 |
+
@misc{xiong2024rlhflowmath,
|
71 |
+
author={Wei Xiong and Hanning Zhang and Nan Jiang and Tong Zhang},
|
72 |
+
title = {An Implementation of Generative PRM},
|
73 |
+
year = {2024},
|
74 |
+
publisher = {GitHub},
|
75 |
+
journal = {GitHub repository},
|
76 |
+
howpublished = {\url{https://github.com/RLHFlow/RLHF-Reward-Modeling}}
|
77 |
+
}
|
78 |
+
```
|
79 |
+
|
80 |
+
|
81 |
+
|