munish0838 commited on
Commit
19a27fa
1 Parent(s): c100175

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +192 -0
README.md ADDED
@@ -0,0 +1,192 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ ---
3
+
4
+ license: llama3.1
5
+ language:
6
+ - en
7
+ pipeline_tag: text-generation
8
+ datasets:
9
+ - allenai/tulu-3-sft-mixture
10
+ base_model:
11
+ - meta-llama/Llama-3.1-8B
12
+ library_name: transformers
13
+
14
+ ---
15
+
16
+ [![QuantFactory Banner](https://lh7-rt.googleusercontent.com/docsz/AD_4nXeiuCm7c8lEwEJuRey9kiVZsRn2W-b4pWlu3-X534V3YmVuVc2ZL-NXg2RkzSOOS2JXGHutDuyyNAUtdJI65jGTo8jT9Y99tMi4H4MqL44Uc5QKG77B0d6-JfIkZHFaUA71-RtjyYZWVIhqsNZcx8-OMaA?key=xt3VSDoCbmTY7o-cwwOFwQ)](https://hf.co/QuantFactory)
17
+
18
+
19
+ # QuantFactory/Llama-3.1-Tulu-3-8B-SFT-GGUF
20
+ This is quantized version of [allenai/Llama-3.1-Tulu-3-8B-SFT](https://huggingface.co/allenai/Llama-3.1-Tulu-3-8B-SFT) created using llama.cpp
21
+
22
+ # Original Model Card
23
+
24
+
25
+ <img src="https://huggingface.co/datasets/allenai/blog-images/resolve/main/tulu3/Tulu3-logo.png" alt="Tulu 3 banner" width="800" style="margin-left:'auto' margin-right:'auto' display:'block'"/>
26
+
27
+ # Llama-3.1-Tulu-3-8B-SFT
28
+
29
+ Tülu3 is a leading instruction following model family, offering fully open-source data, code, and recipes designed to serve as a comprehensive guide for modern post-training techniques.
30
+ Tülu3 is designed for state-of-the-art performance on a diversity of tasks in addition to chat, such as MATH, GSM8K, and IFEval.
31
+
32
+ ## Model description
33
+
34
+ - **Model type:** A model trained on a mix of publicly available, synthetic and human-created datasets.
35
+ - **Language(s) (NLP):** Primarily English
36
+ - **License:** Llama 3.1 Community License Agreement
37
+ - **Finetuned from model:** meta-llama/Llama-3.1-8B
38
+
39
+ ### Model Sources
40
+
41
+ - **Training Repository:** https://github.com/allenai/open-instruct
42
+ - **Eval Repository:** https://github.com/allenai/olmes
43
+ - **Paper:** https://allenai.org/papers/tulu-3-report.pdf (arXiv soon)
44
+ - **Demo:** https://playground.allenai.org/
45
+
46
+ ### Model Family
47
+
48
+ | **Stage** | **Llama 3.1 8B** | **Llama 3.1 70B** |
49
+ |----------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
50
+ | **Base Model** | [meta-llama/Llama-3.1-8B](https://huggingface.co/meta-llama/Llama-3.1-8B) | [meta-llama/Llama-3.1-70B](https://huggingface.co/meta-llama/Llama-3.1-70B) |
51
+ | **SFT** | [allenai/Llama-3.1-Tulu-3-8B-SFT](https://huggingface.co/allenai/Llama-3.1-Tulu-3-8B-SFT) | [allenai/Llama-3.1-Tulu-3-70B-SFT](https://huggingface.co/allenai/Llama-3.1-Tulu-3-70B-SFT) |
52
+ | **DPO** | [allenai/Llama-3.1-Tulu-3-8B-DPO](https://huggingface.co/allenai/Llama-3.1-Tulu-3-8B-DPO) | [allenai/Llama-3.1-Tulu-3-70B-DPO](https://huggingface.co/allenai/Llama-3.1-Tulu-3-70B-DPO) |
53
+ | **Final Models (RLVR)** | [allenai/Llama-3.1-Tulu-3-8B](https://huggingface.co/allenai/Llama-3.1-Tulu-3-8B) | [allenai/Llama-3.1-Tulu-3-70B](https://huggingface.co/allenai/Llama-3.1-Tulu-3-70B) |
54
+ | **Reward Model (RM)**| [allenai/Llama-3.1-Tulu-3-8B-RM](https://huggingface.co/allenai/Llama-3.1-Tulu-3-8B-RM) | (Same as 8B) |
55
+
56
+ ## Using the model
57
+
58
+ ### Loading with HuggingFace
59
+
60
+ To load the model with HuggingFace, use the following snippet:
61
+ ```
62
+ from transformers import AutoModelForCausalLM
63
+
64
+ tulu_model = AutoModelForCausalLM.from_pretrained("allenai/Llama-3.1-Tulu-3-8B-SFT")
65
+ ```
66
+
67
+ ### VLLM
68
+
69
+ As a Llama base model, the model can be easily served with:
70
+ ```
71
+ vllm serve allenai/Llama-3.1-Tulu-3-8B-SFT
72
+ ```
73
+ Note that given the long chat template of Llama, you may want to use `--max_model_len=8192`.
74
+
75
+ ### Chat template
76
+
77
+ The chat template for our models is formatted as:
78
+ ```
79
+ <|user|>\nHow are you doing?\n<|assistant|>\nI'm just a computer program, so I don't have feelings, but I'm functioning as expected. How can I assist you today?<|endoftext|>
80
+ ```
81
+ Or with new lines expanded:
82
+ ```
83
+ <|user|>
84
+ How are you doing?
85
+ <|assistant|>
86
+ I'm just a computer program, so I don't have feelings, but I'm functioning as expected. How can I assist you today?<|endoftext|>
87
+ ```
88
+ It is embedded within the tokenizer as well, for `tokenizer.apply_chat_template`.
89
+
90
+ ### System prompt
91
+
92
+ In Ai2 demos, we use this system prompt by default:
93
+ ```
94
+ You are Tulu 3, a helpful and harmless AI Assistant built by the Allen Institute for AI.
95
+ ```
96
+ The model has not been trained with a specific system prompt in mind.
97
+
98
+ ### Bias, Risks, and Limitations
99
+
100
+ The Tülu3 models have limited safety training, but are not deployed automatically with in-the-loop filtering of responses like ChatGPT, so the model can produce problematic outputs (especially when prompted to do so).
101
+ It is also unknown what the size and composition of the corpus was used to train the base Llama 3.1 models, however it is likely to have included a mix of Web data and technical sources like books and code.
102
+ See the Falcon 180B model card for an example of this.
103
+
104
+
105
+ ## Performance
106
+
107
+ | Benchmark (eval) | Tülu 3 SFT 8B | Tülu 3 DPO 8B | Tülu 3 8B | Llama 3.1 8B Instruct | Qwen 2.5 7B Instruct | Magpie 8B | Gemma 2 9B Instruct | Ministral 8B Instruct |
108
+ |---------------------------------|----------------|----------------|------------|------------------------|----------------------|-----------|---------------------|-----------------------|
109
+ | **Avg.** | 60.4 | 64.4 | **64.8** | 62.2 | 57.8 | 44.7 | 55.2 | 58.3 |
110
+ | **MMLU (0 shot, CoT)** | 65.9 | 68.7 | 68.2 | 71.2 | **76.6** | 62.0 | 74.6 | 68.5 |
111
+ | **PopQA (15 shot)** | **29.3** | 29.3 | 29.1 | 20.2 | 18.1 | 22.5 | 28.3 | 20.2 |
112
+ | **TruthfulQA (6 shot)** | 46.8 | 56.1 | 55.0 | 55.1 | **63.1** | 57.0 | 61.4 | 55.5 |
113
+ | **BigBenchHard (3 shot, CoT)** | **67.9** | 65.8 | 66.0 | 62.8 | 21.7 | 0.9 | 2.5 | 56.2 |
114
+ | **DROP (3 shot)** | 61.3 | 62.5 | **62.6** | 61.5 | 54.4 | 49.4 | 58.8 | 56.2 |
115
+ | **MATH (4 shot CoT, Flex)** | 31.5 | 42.0 | **43.7** | 42.5 | 14.8 | 5.1 | 29.8 | 40.0 |
116
+ | **GSM8K (8 shot, CoT)** | 76.2 | 84.3 | **87.6** | 83.4 | 83.8 | 61.2 | 79.7 | 80.0 |
117
+ | **HumanEval (pass@10)** | 86.2 | 83.9 | 83.9 | 86.3 | **93.1** | 75.4 | 71.7 | 91.0 |
118
+ | **HumanEval+ (pass@10)** | 81.4 | 78.6 | 79.2 | 82.9 | **89.7** | 69.1 | 67.0 | 88.5 |
119
+ | **IFEval (prompt loose)** | 72.8 | 81.1 | **82.4** | 80.6 | 74.7 | 38.8 | 69.9 | 56.4 |
120
+ | **AlpacaEval 2 (LC % win)** | 12.4 | 33.5 | 34.5 | 24.2 | 29.0 | **49.0** | 43.7 | 31.4 |
121
+ | **Safety (6 task avg.)** | **93.1** | 87.2 | 85.5 | 75.2 | 75.0 | 46.4 | 75.5 | 56.2 |
122
+
123
+ | Benchmark (eval) | Tülu 3 70B SFT | Tülu 3 DPO 70B | Tülu 3 70B | Llama 3.1 70B Instruct | Qwen 2.5 72B Instruct | Hermes 3 Llama 3.1 70B | Nemotron Llama 3.1 70B |
124
+ |---------------------------------|-----------------|-----------------|-------------|-------------------------|-----------------------|------------------------|-------------------------|
125
+ | **Avg.** | 72.6 | 75.9 | **76.0** | 73.4 | 71.5 | 68.3 | 65.5 |
126
+ | **MMLU (0 shot, CoT)** | 78.9 | 83.3 | 83.1 | 85.3 | **85.5** | 80.4 | 83.8 |
127
+ | **PopQA (15 shot)** | **48.6** | 46.3 | 46.5 | 46.4 | 30.6 | 48.1 | 36.4 |
128
+ | **TruthfulQA (6 shot)** | 55.7 | 67.9 | 67.6 | 66.8 | **69.9** | 66.5 | 62.6 |
129
+ | **BigBenchHard (3 shot, CoT)** | **82.7** | 81.8 | 82.0 | 73.8 | 67.2 | 82.1 | 0.7 |
130
+ | **DROP (3 shot)** | **77.2** | 74.1 | 74.3 | 77.0 | 34.2 | 73.2 | 68.8 |
131
+ | **MATH (4 shot CoT, Flex)** | 53.7 | 62.3 | 63.0 | 56.4 | **74.3** | 41.9 | 55.0 |
132
+ | **GSM8K (8 shot, CoT)** | 91.1 | 93.5 | 93.5 | **93.7** | 89.5 | 90.0 | 84.7 |
133
+ | **HumanEval (pass@10)** | 92.9 | 92.4 | 92.4 | 93.6 | 94.0 | 89.6 | **94.1** |
134
+ | **HumanEval+ (pass@10)** | 87.3 | 88.4 | 88.0 | 89.5 | **90.8** | 85.9 | 85.5 |
135
+ | **IFEval (prompt loose)** | 82.1 | 82.6 | 83.2 | **88.0** | 87.6 | 76.0 | 79.9 |
136
+ | **AlpacaEval 2 (LC % win)** | 26.3 | 49.6 | 49.8 | 33.4 | 47.7 | 28.4 | **66.1** |
137
+ | **Safety (6 task avg.)** | **94.4** | 89.0 | 88.3 | 76.5 | 87.0 | 57.9 | 69.0 |
138
+
139
+
140
+ ## Hyperparamters
141
+
142
+ SFT:
143
+ - **Learning Rate**: 5E-6 (8B), 2E-6 (70B)
144
+ - **Effective Batch Size:** 128
145
+ - **Max. Sequence Length:** 4096
146
+ - **Loss Accumulation:** Sum (see https://unsloth.ai/blog/gradient)
147
+ - **Learning Rate Schedule:** Linear
148
+ - **LR Warmup Ratio:** 0.03
149
+ - **Num. Epochs:** 2
150
+
151
+ ## License and use
152
+
153
+ All Llama 3.1 Tülu3 models are released under Meta's [Llama 3.1 Community License Agreement](https://www.llama.com/llama3_1/license/).
154
+ Llama 3.1 is licensed under the Llama 3.1 Community License, Copyright © Meta Platforms, Inc.
155
+ Tülu3 is intended for research and educational use.
156
+ For more information, please see our [Responsible Use Guidelines](https://allenai.org/responsible-use).
157
+
158
+ ## Citation
159
+
160
+ If Tülu3 or any of the related materials were helpful to your work, please cite:
161
+ ```
162
+ @article{lambert2024tulu3,
163
+ title = {Tülu 3: Pushing Frontiers in Open Language Model Post-Training},
164
+ author = {
165
+ Nathan Lambert and
166
+ Jacob Morrison and
167
+ Valentina Pyatkin and
168
+ Shengyi Huang and
169
+ Hamish Ivison and
170
+ Faeze Brahman and
171
+ Lester James V. Miranda and
172
+ Alisa Liu and
173
+ Nouha Dziri and
174
+ Shane Lyu and
175
+ Yuling Gu and
176
+ Saumya Malik and
177
+ Victoria Graf and
178
+ Jena D. Hwang and
179
+ Jiangjiang Yang and
180
+ Ronan Le Bras and
181
+ Oyvind Tafjord and
182
+ Chris Wilhelm and
183
+ Luca Soldaini and
184
+ Noah A. Smith and
185
+ Yizhong Wang and
186
+ Pradeep Dasigi and
187
+ Hannaneh Hajishirzi
188
+ },
189
+ year = {2024},
190
+ email = {tulu@allenai.org}
191
+ }
192
+ ```