|
--- |
|
license: apache-2.0 |
|
base_model: t5-base |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: t5-small-act2pas |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# t5-small-act2pas |
|
|
|
This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.5109 |
|
- Rouge1: 84.3715 |
|
- Rouge2: 72.1078 |
|
- Rougel: 84.2884 |
|
- Rougelsum: 84.2975 |
|
- Gen Len: 14.2801 |
|
- Accuracy Log Reg: 0.7544 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | Accuracy Log Reg | |
|
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|:----------------:| |
|
| 0.5683 | 1.0 | 2615 | 0.5281 | 84.0579 | 71.5636 | 83.9798 | 83.9904 | 14.2664 | 0.7474 | |
|
| 0.5449 | 2.0 | 5230 | 0.5191 | 84.2078 | 71.7956 | 84.1207 | 84.1313 | 14.271 | 0.7496 | |
|
| 0.5343 | 3.0 | 7845 | 0.5142 | 84.3083 | 72.002 | 84.228 | 84.2376 | 14.2794 | 0.753 | |
|
| 0.5219 | 4.0 | 10460 | 0.5117 | 84.3502 | 72.0894 | 84.2692 | 84.2779 | 14.2845 | 0.7526 | |
|
| 0.5179 | 5.0 | 13075 | 0.5109 | 84.3715 | 72.1078 | 84.2884 | 84.2975 | 14.2801 | 0.7544 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.40.0 |
|
- Pytorch 2.1.2 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.19.1 |
|
|