822e388576cf702764e8f674b64c176e00be03838cf8b8bcc21bd7e98626c208
Browse files- README.md +9 -13
- results.json +17 -0
README.md
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
---
|
2 |
thumbnail: "https://assets-global.website-files.com/646b351987a8d8ce158d1940/64ec9e96b4334c0e1ac41504_Logo%20with%20white%20text.svg"
|
3 |
-
base_model: winglian
|
4 |
metrics:
|
5 |
- memory_disk
|
6 |
- memory_inference
|
@@ -38,7 +38,7 @@ tags:
|
|
38 |
![image info](./plots.png)
|
39 |
|
40 |
**Frequently Asked Questions**
|
41 |
-
- ***How does the compression work?*** The model is compressed with
|
42 |
- ***How does the model quality change?*** The quality of the model output might vary compared to the base model.
|
43 |
- ***How is the model efficiency evaluated?*** These results were obtained on HARDWARE_NAME with configuration described in `model/smash_config.json` and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you.
|
44 |
- ***What is the model format?*** We use safetensors.
|
@@ -52,22 +52,18 @@ tags:
|
|
52 |
|
53 |
You can run the smashed model with these steps:
|
54 |
|
55 |
-
0. Check requirements from the original repo winglian
|
56 |
1. Make sure that you have installed quantization related packages.
|
57 |
```bash
|
58 |
-
|
59 |
```
|
60 |
2. Load & run the model.
|
61 |
```python
|
62 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
model = HQQModelForCausalLM.from_quantized("PrunaAI/winglian-Llama-3-8b-64k-PoSE-HQQ-2bit-smashed", device_map='auto')
|
68 |
-
except:
|
69 |
-
model = AutoHQQHFModel.from_quantized("PrunaAI/winglian-Llama-3-8b-64k-PoSE-HQQ-2bit-smashed")
|
70 |
-
tokenizer = AutoTokenizer.from_pretrained("winglian/Llama-3-8b-64k-PoSE")
|
71 |
|
72 |
input_ids = tokenizer("What is the color of prunes?,", return_tensors='pt').to(model.device)["input_ids"]
|
73 |
|
@@ -81,7 +77,7 @@ The configuration info are in `smash_config.json`.
|
|
81 |
|
82 |
## Credits & License
|
83 |
|
84 |
-
The license of the smashed model follows the license of the original model. Please check the license of the original model winglian
|
85 |
|
86 |
## Want to compress other models?
|
87 |
|
|
|
1 |
---
|
2 |
thumbnail: "https://assets-global.website-files.com/646b351987a8d8ce158d1940/64ec9e96b4334c0e1ac41504_Logo%20with%20white%20text.svg"
|
3 |
+
base_model: PrunaAI/winglian-Llama-3-8b-64k-PoSE-HQQ-2bit-smashed
|
4 |
metrics:
|
5 |
- memory_disk
|
6 |
- memory_inference
|
|
|
38 |
![image info](./plots.png)
|
39 |
|
40 |
**Frequently Asked Questions**
|
41 |
+
- ***How does the compression work?*** The model is compressed with [.
|
42 |
- ***How does the model quality change?*** The quality of the model output might vary compared to the base model.
|
43 |
- ***How is the model efficiency evaluated?*** These results were obtained on HARDWARE_NAME with configuration described in `model/smash_config.json` and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you.
|
44 |
- ***What is the model format?*** We use safetensors.
|
|
|
52 |
|
53 |
You can run the smashed model with these steps:
|
54 |
|
55 |
+
0. Check requirements from the original repo PrunaAI/winglian-Llama-3-8b-64k-PoSE-HQQ-2bit-smashed installed. In particular, check python, cuda, and transformers versions.
|
56 |
1. Make sure that you have installed quantization related packages.
|
57 |
```bash
|
58 |
+
REQUIREMENTS_INSTRUCTIONS
|
59 |
```
|
60 |
2. Load & run the model.
|
61 |
```python
|
62 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
63 |
+
IMPORTS
|
64 |
+
|
65 |
+
MODEL_LOAD
|
66 |
+
tokenizer = AutoTokenizer.from_pretrained("PrunaAI/winglian-Llama-3-8b-64k-PoSE-HQQ-2bit-smashed")
|
|
|
|
|
|
|
|
|
67 |
|
68 |
input_ids = tokenizer("What is the color of prunes?,", return_tensors='pt').to(model.device)["input_ids"]
|
69 |
|
|
|
77 |
|
78 |
## Credits & License
|
79 |
|
80 |
+
The license of the smashed model follows the license of the original model. Please check the license of the original model PrunaAI/winglian-Llama-3-8b-64k-PoSE-HQQ-2bit-smashed before using this model which provided the base model. The license of the `pruna-engine` is [here](https://pypi.org/project/pruna-engine/) on Pypi.
|
81 |
|
82 |
## Want to compress other models?
|
83 |
|
results.json
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"current_gpu_type": "NVIDIA A100-PCIE-40GB",
|
3 |
+
"current_gpu_total_memory": 40339.3125,
|
4 |
+
"perplexity": 353653.375,
|
5 |
+
"token_generation_latency_sync": 166.52535552978514,
|
6 |
+
"token_generation_latency_async": 166.5806146338582,
|
7 |
+
"token_generation_throughput_sync": 0.006005091517856795,
|
8 |
+
"token_generation_throughput_async": 0.0060030994734770644,
|
9 |
+
"token_generation_CO2_emissions": null,
|
10 |
+
"token_generation_energy_consumption": null,
|
11 |
+
"inference_latency_sync": 262.70494689941404,
|
12 |
+
"inference_latency_async": 209.80782508850098,
|
13 |
+
"inference_throughput_sync": 0.0038065518438177167,
|
14 |
+
"inference_throughput_async": 0.004766266461120698,
|
15 |
+
"inference_CO2_emissions": null,
|
16 |
+
"inference_energy_consumption": null
|
17 |
+
}
|